

Adafruit CircuitPython API Reference

Welcome to the API reference documentation for Adafruit CircuitPython.
This contains low-level API reference docs which may link out to separate
“getting started” guides. Adafruit [https://adafruit.com] has many
excellent tutorials available through the
Adafruit Learning System [https://learn.adafruit.com/].

Adafruit CircuitPython

[image: Build Status] [https://travis-ci.org/adafruit/circuitpython] [image: Doc Status] [http://circuitpython.readthedocs.io/] [image: Discord] [https://discord.gg/nBQh6qu]

Status | Supported Boards
| Download |
Documentation |
Contributing | Differences from
Micropython | Project
Structure

CircuitPython is an education friendly open source derivative of
MicroPython [https://micropython.org]. CircuitPython supports use
on educational development boards designed and sold by
Adafruit [https://adafruit.com]. Adafruit CircuitPython features
unified Python core APIs and a growing list of Adafruit libraries and
drivers of that work with it.

Status

This project is stable. Most APIs should be stable going forward. Those
that change will change on major version numbers such as 2.0.0 and
3.0.0.

Supported Boards

Designed for CircuitPython

	Adafruit CircuitPlayground
Express [https://www.adafruit.com/product/3333]

	Adafruit Feather M0
Express [https://www.adafruit.com/product/3403]

	Adafruit Metro M0 Express [https://www.adafruit.com/product/3505]

	Adafruit Gemma M0 [https://www.adafruit.com/product/3501]

Other

	Adafruit Feather HUZZAH [https://www.adafruit.com/products/2821]

	Adafruit Feather M0
Basic [https://www.adafruit.com/products/2772]

	Adafruit Feather M0 Bluefruit
LE [https://www.adafruit.com/products/2995] (uses M0 Basic
binaries)

	Adafruit Feather M0
Adalogger [https://www.adafruit.com/product/2796] (MicroSD card
supported using the Adafruit CircuitPython SD
library [https://github.com/adafruit/Adafruit_CircuitPython_SD])

	Arduino Zero [https://www.arduino.cc/en/Main/ArduinoBoardZero]

Download

Official binaries are available through the latest GitHub
releases [https://github.com/adafruit/circuitpython/releases].
Continuous (one per commit) builds are available
here [https://adafruit-circuit-python.s3.amazonaws.com/index.html?prefix=bin]
and includes experimental hardware support.

Documentation

Guides and videos are available through the Adafruit Learning
System [https://learn.adafruit.com/] under the CircuitPython
category [https://learn.adafruit.com/category/circuitpython] and
MicroPython
category [https://learn.adafruit.com/category/micropython]. An API
reference is also available on Read the
Docs [http://circuitpython.readthedocs.io/en/latest/?].

Contributing

See
CONTRIBUTING.md [https://github.com/adafruit/circuitpython/blob/master/CONTRIBUTING.md]
for full guidelines but please be aware that by contributing to this
project you are agreeing to the Code of
Conduct [https://github.com/adafruit/circuitpython/blob/master/CODE_OF_CONDUCT.md].
Contributors who follow the Code of
Conduct [https://github.com/adafruit/circuitpython/blob/master/CODE_OF_CONDUCT.md]
are welcome to submit pull requests and they will be promptly reviewed
by project admins. Please join the Gitter
chat [https://gitter.im/adafruit/circuitpython] or
Discord [https://discord.gg/nBQh6qu] too.

Differences from MicroPython [https://github.com/micropython/micropython]

CircuitPython:

	includes a port for Atmel SAMD21 (Commonly known as M0 in Adafruit
product names.)

	supports only Atmel SAMD21 and ESP8266 ports.

	tracks MicroPython’s releases (not master).

Behavior

	The order that files are run and the state that is shared between
them. CircuitPython’s goal is to clarify the role of each file and
make each file independent from each other.

	boot.py (or settings.py) runs only once on start up before
USB is initialized. This lays the ground work for configuring USB at
startup rather than it being fixed. Since serial is not available,
output is written to boot_out.txt.

	code.py (or main.py) is run after every reload until it
finishes or is interrupted. After it is done running, the vm and
hardware is reinitialized. This means you cannot read state from
``code.py`` in the REPL anymore. CircuitPython’s goal for this
change includes reduce confusion about pins and memory being used.

	After code.py the REPL can be entered by pressing any key. It no
longer shares state with code.py so it is a fresh vm.

	Autoreload state will be maintained across reload.

	Adds a safe mode that does not run user code after a hard crash or
brown out. The hope is that this will make it easier to fix code that
causes nasty crashes by making it available through mass storage
after the crash. A reset (the button) is needed after its fixed to
get back into normal mode.

API

	Unified hardware APIs: audioio [https://circuitpython.readthedocs.io/en/latest/shared-bindings/audioio/__init__.html], analogio [https://circuitpython.readthedocs.io/en/latest/shared-bindings/analogio/__init__.html], busio [https://circuitpython.readthedocs.io/en/latest/shared-bindings/busio/__init__.html], digitalio [https://circuitpython.readthedocs.io/en/latest/shared-bindings/digitalio/__init__.html], pulseio [https://circuitpython.readthedocs.io/en/latest/shared-bindings/pulseio/__init__.html], touchio [https://circuitpython.readthedocs.io/en/latest/shared-bindings/touchio/__init__.html], microcontroller [https://circuitpython.readthedocs.io/en/latest/shared-bindings/microcontroller/__init__.html], board [https://circuitpython.readthedocs.io/en/latest/shared-bindings/board/__init__.html], bitbangio [https://circuitpython.readthedocs.io/en/latest/shared-bindings/bitbangio/__init__.html]

	No machine API on Atmel SAMD21 port.

Modules

	No module aliasing. (uos and utime are not available as
os and time respectively.) Instead os, time, and
random are CPython compatible.

	New storage module which manages file system mounts.
(Functionality from uos in MicroPython.)

	Modules with a CPython counterpart, such as time, os and
random, are strict
subsets [https://circuitpython.readthedocs.io/en/latest/shared-bindings/time/__init__.html]
of their CPython
version [https://docs.python.org/3.4/library/time.html?highlight=time#module-time].
Therefore, code from CircuitPython is runnable on CPython but not
necessarily the reverse.

	tick count is available as
time.monotonic() [https://circuitpython.readthedocs.io/en/latest/shared-bindings/time/__init__.html#time.monotonic]

atmel-samd21 features

	RGB status LED

	Auto-reload after file write over mass storage. (Disable with
samd.disable_autoreload())

	Wait state after boot and main run, before REPL.

	Main is one of these: code.txt, code.py, main.py,
main.txt

	Boot is one of these: settings.txt, settings.py, boot.py,
boot.txt

Project Structure

Here is an overview of the top-level source code directories.

Core

The core code of
MicroPython [https://github.com/micropython/micropython] is shared
amongst ports including CircuitPython:

	docs High level user documentation in Sphinx reStructuredText
format.

	drivers External device drivers written in Python.

	examples A few example Python scripts.

	extmod Shared C code used in multiple ports’ modules.

	lib Shared core C code including externally developed libraries
such as FATFS.

	logo The MicroPython logo.

	mpy-cross A cross compiler that converts Python files to byte
code prior to being run in MicroPython. Useful for reducing library
size.

	py Core Python implementation, including compiler, runtime, and
core library.

	shared-bindings Shared definition of Python modules, their docs
and backing C APIs. Ports must implement the C API to support the
corresponding module.

	shared-module Shared implementation of Python modules that may be
based on common-hal.

	tests Test framework and test scripts.

	tools Various tools, including the pyboard.py module.

Ports

Ports include the code unique to a microcontroller line and also
variations based on the board.

	atmel-samd Support for SAMD21 based boards such as Arduino
Zero [https://www.arduino.cc/en/Main/ArduinoBoardZero], Adafruit
Feather M0 Basic [https://www.adafruit.com/products/2772], and
Adafruit Feather M0 Bluefruit
LE [https://www.adafruit.com/products/2995].

	bare-arm A bare minimum version of MicroPython for ARM MCUs.

	cc3200 Support for boards based
CC3200 [http://www.ti.com/product/CC3200] from TI such as the
WiPy 1.0 [https://www.pycom.io/solutions/py-boards/wipy1/].

	esp8266 Support for boards based on ESP8266 WiFi modules such as
the Adafruit Feather
HUZZAH [https://www.adafruit.com/products/2821].

	minimal A minimal MicroPython port. Start with this if you want
to port MicroPython to another microcontroller.

	pic16bit Support for 16-bit PIC microcontrollers.

	qemu-arm Support for ARM emulation through
QEMU [https://qemu.org].

	stmhal Support for boards based on STM32 microcontrollers
including the MicroPython flagship
PyBoard [https://store.micropython.org/store/#/products/PYBv1_1].

	teensy Support for the Teensy line of boards such as the Teensy
3.1 [https://www.pjrc.com/teensy/teensy31.html].

	unix Support for UNIX.

	windows Support for
Windows [https://www.microsoft.com/en-us/windows/].

	zephyr Support for Zephyr [https://www.zephyrproject.org/], a
real-time operating system by the Linux Foundation.

CircuitPython only maintains the atmel-samd and esp8266 ports.
The rest are here to maintain compatibility with the
MicroPython [https://github.com/micropython/micropython] parent
project.

⬆ back to top

Full Table of Contents

API and Usage

	Supported Ports

	Troubleshooting
	File system issues

	ValueError: Incompatible .mpy file.

	Additional Adafruit Libraries and Drivers on GitHub
	Bundle

	Foundational Libraries
	Register Library [https://circuitpython.readthedocs.io/projects/register/en/latest/]

	BusDevice Library [https://circuitpython.readthedocs.io/projects/bus_device/en/latest/]

	Helper Libraries
	USB Human Interface Device (Keyboard and Mouse) [https://circuitpython.readthedocs.io/projects/hid/en/latest/]

	Drivers
	NeoPixel [https://circuitpython.readthedocs.io/projects/neopixel/en/latest/]

	SimpleIO [https://circuitpython.readthedocs.io/projects/simpleio/en/latest/]

	RGB Displays [http://micropython-rgb.readthedocs.io/]

	SD Card [https://circuitpython.readthedocs.io/projects/sdcard/en/latest/]

	Analog-to-digital converters: ADS1015 and ADS1115 [http://micropython-ads1015.readthedocs.io/]

	DS3231 Real-time Clock (Precision RTC) [https://circuitpython.readthedocs.io/projects/ds3231/en/latest/]

	DS1307 Real-time Clock (5V RTC Breakout) [https://circuitpython.readthedocs.io/projects/ds1307/en/latest/]

	PCF8523 Real-time Clock (Adalogger RTC) [https://circuitpython.readthedocs.io/projects/pcf8523/en/latest/]

	TCS34725 Color Sensor [http://micropython-tcs34725.readthedocs.io/]

	TSL2561 Light Sensor [http://micropython-tsl2561.readthedocs.io/]

	PCA9685 Motor and Servo Controllers [http://micropython-pca9685.readthedocs.io/]

	HT16K33 LED Matrices and Segment Displays [http://micropython-ht16k33.readthedocs.io/]

	IS31FL3731 Charlieplexed LED Matrix [http://micropython-is31fl3731.readthedocs.io/]

	MAX7219 LED Matrix [http://circuitpython.readthedocs.io/projects/max7219/en/latest/]

	DotStar [https://circuitpython.readthedocs.io/projects/dotstar/en/latest/]

Design and porting reference

	Design Guide

	Adding *io support to other ports

MicroPython specific

	MicroPython libraries
	Python standard libraries and micro-libraries

	MicroPython-specific libraries

	Libraries specific to the ESP8266

About the project

	Adafruit's CircuitPython Documentation

Indices and tables

	Index

	Module Index

	Search Page

Supported Ports

Adafruit’s CircuitPython currently has limited support with a focus on supporting the Atmel SAMD
and ESP8266.

Troubleshooting

From time to time, an error occurs when working with CircuitPython. Here are a
variety of errors that can happen, what they mean and how to fix them.

File system issues

If your host computer starts complaining that your CIRCUITPY drive is corrupted
or files cannot be overwritten or deleted, then you will have to erase it completely.
When CircuitPython restarts it will create a fresh empty CIRCUITPY filesystem.

This often happens on Windows when the CIRCUITPY disk is not safely ejected
before being reset by the button or being disconnected from USB. This can also
happen on Linux and Mac OSX but its less likely.

Caution

To erase and re-create CIRCUITPY (for example, to correct a corrupted filesystem),
follow one of the procedures below. It’s important to note that any files stored on the
CIRCUITPY drive will be erased.

For boards with CIRCUITPY stored on a separate SPI flash chip,
such as Feather M0 Express, Metro M0 Express and Circuit Playground Express:

	Download the appropriate flash .erase uf2 from the Adafruit_SPIFlash repo [https://github.com/adafruit/Adafruit_SPIFlash/tree/master/examples/flash_erase_express].

	Double-click the reset button.

	Copy the appropriate .uf2 to the xxxBOOT drive.

	The on-board NeoPixel will turn blue, indicating the erase has started.

	After about 15 seconds, the NexoPixel will start flashing green. If it flashes red, the erase failed.

	Double-click again and load the appropriate CircuitPython .uf2 [https://github.com/adafruit/circuitpython/releases/latest].

For boards without SPI flash, such as Feather M0 Proto, Gemma M0 and, Trinket M0:

	Download the appropriate erase .uf2 from the Learn repo [https://github.com/adafruit/Adafruit_Learning_System_Guides/tree/master/uf2_flash_erasers].

	Double-click the reset button.

	Copy the appropriate .uf2 to the xxxBOOT drive.

	The boot LED will start pulsing again, and the xxxBOOT drive will appear again.

	Load the appropriate CircuitPython .uf2 [https://github.com/adafruit/circuitpython/releases/latest].

ValueError: Incompatible .mpy file.

This error occurs when importing a module that is stored as a mpy binary file
(rather than a py text file) that was generated by a different version of
CircuitPython than the one its being loaded into. Most versions are compatible
but, rarely they aren’t. In particular, the mpy binary format changed between
CircuitPython versions 1.x and 2.x, and will change again between 2.x and 3.x.

So, for instance, if you just upgraded to CircuitPython 2.x from 1.x you’ll need to download a
newer version of the library that triggered the error on import. They are
all available in the
Adafruit bundle [https://github.com/adafruit/Adafruit_CircuitPython_Bundle/releases/latest]
and the Community bundle [https://github.com/adafruit/CircuitPython_Community_Bundle/releases/latest].
Make sure to download a version with 2.0.0 or higher in the filename.

Additional Adafruit Libraries and Drivers on GitHub

These are libraries and drivers available in separate GitHub repos. They are
designed for use with CircuitPython and may or may not work with
MicroPython [https://micropython.org].

Bundle

We provide a bundle of all our libraries to ease installation of drivers and
their dependencies. he bundle is primarily geared to the Adafruit Express line
of boards which will feature a relatively large external flash. With Express
boards, its easy to copy them all onto the filesystem. However, if you don’t
have enough space simply copy things over as they are needed.

The bundles are available on GitHub [https://github.com/adafruit/Adafruit_CircuitPython_Bundle/releases].

To install them:

	Download [https://github.com/adafruit/Adafruit_CircuitPython_Bundle/releases]
and unzip the latest zip that’s not a source zip.

	Copy the lib folder to the CIRCUITPY or MICROPYTHON.

Foundational Libraries

These libraries provide critical functionality to many of the drivers below. It
is recommended to always have them installed onto the CircuitPython file system in
the lib/ directory. Some drivers may not work without them.

	Register Library [https://circuitpython.readthedocs.io/projects/register/en/latest/]

	BusDevice Library [https://circuitpython.readthedocs.io/projects/bus_device/en/latest/]

Helper Libraries

These libraries build on top of the low level APIs to simplify common tasks.

	USB Human Interface Device (Keyboard and Mouse) [https://circuitpython.readthedocs.io/projects/hid/en/latest/]

Drivers

Drivers provide easy access to sensors and other chips without requiring a
knowledge of the interface details of the chip itself.

	NeoPixel [https://circuitpython.readthedocs.io/projects/neopixel/en/latest/]

	SimpleIO [https://circuitpython.readthedocs.io/projects/simpleio/en/latest/]

	RGB Displays [http://micropython-rgb.readthedocs.io/]

	SD Card [https://circuitpython.readthedocs.io/projects/sdcard/en/latest/]

	Analog-to-digital converters: ADS1015 and ADS1115 [http://micropython-ads1015.readthedocs.io/]

	DS3231 Real-time Clock (Precision RTC) [https://circuitpython.readthedocs.io/projects/ds3231/en/latest/]

	DS1307 Real-time Clock (5V RTC Breakout) [https://circuitpython.readthedocs.io/projects/ds1307/en/latest/]

	PCF8523 Real-time Clock (Adalogger RTC) [https://circuitpython.readthedocs.io/projects/pcf8523/en/latest/]

	TCS34725 Color Sensor [http://micropython-tcs34725.readthedocs.io/]

	TSL2561 Light Sensor [http://micropython-tsl2561.readthedocs.io/]

	PCA9685 Motor and Servo Controllers [http://micropython-pca9685.readthedocs.io/]

	HT16K33 LED Matrices and Segment Displays [http://micropython-ht16k33.readthedocs.io/]

	IS31FL3731 Charlieplexed LED Matrix [http://micropython-is31fl3731.readthedocs.io/]

	MAX7219 LED Matrix [http://circuitpython.readthedocs.io/projects/max7219/en/latest/]

	DotStar [https://circuitpython.readthedocs.io/projects/dotstar/en/latest/]

Design Guide

MicroPython has created a great foundation to build upon and to make it even
better for beginners we’ve created CircuitPython. This guide covers a number of
ways the core and libraries are geared towards beginners.

Start libraries with the cookiecutter

Cookiecutter is a cool tool that lets you bootstrap a new repo based on another
repo. We’ve made one here [https://github.com/adafruit/cookiecutter-adafruit-circuitpython]
for CircuitPython libraries that include configs for Travis CI and ReadTheDocs
along with a setup.py, license, code of conduct and readme.

Module Naming

Adafruit funded libraries should be under the
adafruit organization [https://github.com/adafruit] and have the format
Adafruit_CircuitPython_<name> and have a corresponding adafruit_<name>
directory (aka package) or adafruit_<name>.py file (aka module).

Community created libraries should have the format CircuitPython_<name> and
not have the adafruit_ module or package prefix.

Both should have the CircuitPython repository topic on GitHub.

Lifetime and ContextManagers

A driver should be initialized and ready to use after construction. If the
device requires deinitialization, then provide it through deinit() and also
provide __enter__ and __exit__ to create a context manager usable with
with.

For example, a user can then use deinit()`:

import digitalio
import board

led = digitalio.DigitalInOut(board.D13)
led.direction = digitalio.Direction.OUTPUT

for i in range(10):
 led.value = True
 time.sleep(0.5)

 led.value = False
 time.sleep(0.5)
led.deinit()

This will deinit the underlying hardware at the end of the program as long as no
exceptions occur.

Alternatively, using a with statement ensures that the hardware is deinitialized:

import digitalio
import board

with digitalio.DigitalInOut(board.D13) as led:
 led.direction = digitalio.Direction.OUTPUT

 for i in range(10):
 led.value = True
 time.sleep(0.5)

 led.value = False
 time.sleep(0.5)

Python’s with statement ensures that the deinit code is run regardless of
whether the code within the with statement executes without exceptions.

For small programs like the examples this isn’t a major concern because all
user usable hardware is reset after programs are run or the REPL is run. However,
for more complex programs that may use hardware intermittently and may also
handle exceptions on their own, deinitializing the hardware using a with
statement will ensure hardware isn’t enabled longer than needed.

Verify your device

Whenever possible, make sure device you are talking to is the device you expect.
If not, raise a ValueError. Beware that I2C addresses can be identical on
different devices so read registers you know to make sure they match your
expectation. Validating this upfront will help catch mistakes.

Getters/Setters

When designing a driver for a device, use properties for device state and use
methods for sequences of abstract actions that the device performs. State is a
property of the device as a whole that exists regardless of what the code is
doing. This includes things like temperature, time, sound, light and the state
of a switch. For a more complete list see the sensor properties bullet below.

Another way to separate state from actions is that state is usually something
the user can sense themselves by sight or feel for example. Actions are
something the user can watch. The device does this and then this.

Making this separation clear to the user will help beginners understand when to
use what.

Here is more info on properties from
Python [https://docs.python.org/3/library/functions.html#property].

Design for compatibility with CPython

CircuitPython is aimed to be one’s first experience with code. It will be the
first step into the world of hardware and software. To ease one’s exploration
out from this first step, make sure that functionality shared with CPython shares
the same API. It doesn’t need to be the full API it can be a subset. However, do
not add non-CPython APIs to the same modules. Instead, use separate non-CPython
modules to add extra functionality. By distinguishing API boundaries at modules
you increase the likelihood that incorrect expectations are found on import and
not randomly during runtime.

Example

When adding extra functionality to CircuitPython to mimic what a normal
operating system would do, either copy an existing CPython API (for example file
writing) or create a separate module to achieve what you want. For example,
mounting and unmount drives is not a part of CPython so it should be done in a
module, such as a new storage module, that is only available in CircuitPython.
That way when someone moves the code to CPython they know what parts need to be
adapted.

Document inline

Whenever possible, document your code right next to the code that implements it.
This makes it more likely to stay up to date with the implementation itself. Use
Sphinx’s automodule to format these all nicely in ReadTheDocs. The cookiecutter
helps set these up.

Use Sphinx flavor rST [http://www.sphinx-doc.org/en/stable/rest.html] for markup.

Lots of documentation is a good thing but it can take a lot of space. To
minimize the space used on disk and on load, distribute the library as both .py
and .mpy, MicroPython and CircuitPython’s bytecode format that omits comments.

Module description

After the license comment:

"""
`<module name>` - <Short description>
===
<Longer description.>
"""

Class description

Documenting what the object does:

class DS3231:
 """Interface to the DS3231 RTC."""

Renders as:

	
class DS3231

	Interface to the DS3231 RTC.

Data descriptor description

Comment is after even though its weird:

lost_power = i2c_bit.RWBit(0x0f, 7)
"""True if the device has lost power since the time was set."""

Renders as:

	
lost_power

	True if the device has lost power since the time was set.

Method description

First line after the method definition:

def turn_right(self, degrees):
 """Turns the bot ``degrees`` right.

 :param float degrees: Degrees to turn right
 """

Renders as:

	
turn_right(degrees)

	Turns the bot degrees right.

	Parameters

	degrees (float) – Degrees to turn right

Property description

Comment comes from the getter:

@property
def datetime(self):
 """The current date and time"""
 return self.datetime_register

@datetime.setter
def datetime(self, value):
 pass

Renders as:

	
datetime

	The current date and time

Use BusDevice

[BusDevice](https://github.com/adafruit/Adafruit_CircuitPython_BusDevice) is an
awesome foundational library that manages talking on a shared I2C or SPI device
for you. The devices manage locking which ensures that a transfer is done as a
single unit despite CircuitPython internals and, in the future, other Python
threads. For I2C, the device also manages the device address. The SPI device,
manages baudrate settings, chip select line and extra post-transaction clock
cycles.

I2C Example

from adafruit_bus_device import i2c_device

class Widget:
 """A generic widget."""

 def __init__(self, i2c):
 # Always on address 0x40.
 self.i2c_device = i2c_device.I2CDevice(i2c, 0x40)
 self.buf = bytearray(1)

 @property
 def register(self):
 """Widget's one register."""
 with self.i2c_device as i2c:
 i2c.writeto(b'0x00')
 i2c.readfrom_into(self.buf)
 return self.buf[0]

SPI Example

from adafruit_bus_device import spi_device

class SPIWidget:
 """A generic widget with a weird baudrate."""

 def __init__(self, spi, chip_select):
 # chip_select is a pin reference such as board.D10.
 self.spi_device = spi_device.SPIDevice(spi, chip_select, baudrate=12345)
 self.buf = bytearray(1)

 @property
 def register(self):
 """Widget's one register."""
 with self.spi_device as spi:
 spi.write(b'0x00')
 i2c.readinto(self.buf)
 return self.buf[0]

Use composition

When writing a driver, take in objects that provide the functionality you need
rather than taking their arguments and constructing them yourself or subclassing
a parent class with functionality. This technique is known as composition and
leads to code that is more flexible and testable than traditional inheritance.

See also

Wikipedia [https://en.wikipedia.org/wiki/Dependency_inversion_principle]
has more information on “dependency inversion”.

For example, if you are writing a driver for an I2C device, then take in an I2C
object instead of the pins themselves. This allows the calling code to provide
any object with the appropriate methods such as an I2C expansion board.

Another example is to expect a DigitalInOut for a pin to
toggle instead of a Pin from board. Taking in the
Pin object alone would limit the driver to pins on
the actual microcontroller instead of pins provided by another driver such as an
IO expander.

Lots of small modules

CircuitPython boards tend to have a small amount of internal flash and a small
amount of ram but large amounts of external flash for the file system. So, create
many small libraries that can be loaded as needed instead of one large file that
does everything.

Speed second

Speed isn’t as important as API clarity and code size. So, prefer simple APIs
like properties for state even if it sacrifices a bit of speed.

Avoid allocations in drivers

Although Python doesn’t require managing memory, its still a good practice for
library writers to think about memory allocations. Avoid them in drivers if
you can because you never know how much something will be called. Fewer
allocations means less time spent cleaning up. So, where you can, prefer
bytearray buffers that are created in __init__ and used throughout the
object with methods that read or write into the buffer instead of creating new
objects. Unified hardware API classes such as busio.SPI are design to read and
write to subsections of buffers.

Its ok to allocate an object to return to the user. Just beware of causing more
than one allocation per call due to internal logic.

However, this is a memory tradeoff so do not do it for large or rarely used
buffers.

Examples

ustruct.pack

Use ustruct.pack_into instead of ustruct.pack.

Sensor properties and units

The Adafruit Unified Sensor Driver Arduino library [https://learn.adafruit.com/using-the-adafruit-unified-sensor-driver/introduction] has a
great list [https://learn.adafruit.com/using-the-adafruit-unified-sensor-driver?view=all#standardised-si-units-for-sensor-data]
of measurements and their units. Use the same ones including the property name
itself so that drivers can be used interchangeably when they have the same
properties.

	Property name

	Python type

	Units

	acceleration

	(float, float, float)

	x, y, z meter per second per second

	magnetic

	(float, float, float)

	micro-Tesla (uT)

	orientation

	(float, float, float)

	x, y, z degrees

	gyro

	(float, float, float)

	x, y, z radians per second

	temperature

	float

	degrees centigrade

	distance

	float

	centimeters

	light

	float

	SI lux

	pressure

	float

	hectopascal (hPa)

	relative_humidity

	float

	percent

	current

	float

	milliamps (mA)

	voltage

	float

	volts (V)

	color

	int

	RGB, eight bits per channel (0xff0000 is red)

	alarm

	(time.struct, str)

	Sample alarm time and string to characterize frequency such as “hourly”

	datetime

	time.struct

	date and time

Common APIs

Outside of sensors, having common methods amongst drivers for similar devices
such as devices can be really useful. Its early days however. For now, try to
adhere to guidelines in this document. Once a design is settled on, add it as a
subsection to this one.

Adding native modules

The Python API for a new module should be defined and documented in
shared-bindings and define an underlying C API. If the implementation is
port-agnostic or relies on underlying APIs of another module, the code should
live in shared-module. If it is port specific then it should live in common-hal
within the port’s folder. In either case, the file and folder structure should
mimic the structure in shared-bindings.

MicroPython compatibility

Keeping compatibility with MicroPython isn’t a high priority. It should be done
when its not in conflict with any of the above goals.

Adding *io support to other ports

digitalio provides a well-defined, cross-port hardware abstraction layer built to support different devices and their drivers. It's backed by the Common HAL, a C api suitable for supporting different hardware in a similar manner. By sharing this C api, developers can support new hardware easily and cross-port functionality to the new hardware.

These instructions also apply to analogio, busio, pulseio and touchio. Most drivers depend on analogio, digitalio and busio so start with those.

File layout

Common HAL related files are found in these locations:

	shared-bindings Shared home for the Python <-> C bindings which includes inline RST documentation for the created interfaces. The common hal functions are defined in the .h files of the corresponding C files.

	shared-modules Shared home for C code built on the Common HAL and used by all ports. This code only uses common_hal methods defined in shared-bindings.

	<port>/common-hal Port-specific implementation of the Common HAL.

Each folder has the substructure of

 MicroPython libraries

MicroPython libraries

Warning

These modules are inherited from MicroPython and may not work in CircuitPython
as documented or at all! If they do work, they may change at any time.

Python standard libraries and micro-libraries

	Builtin functions and exceptions

	array – arrays of numeric data

	gc – control the garbage collector

	math – mathematical functions

	sys – system specific functions

	ubinascii – binary/ASCII conversions

	ucollections – collection and container types

	uerrno – system error codes

	uhashlib – hashing algorithms

	uheapq – heap queue algorithm

	uio – input/output streams

	ujson – JSON encoding and decoding

	ure – simple regular expressions

	uselect – wait for events on a set of streams

	usocket – socket module

	ussl – SSL/TLS module

	ustruct – pack and unpack primitive data types

	uzlib – zlib decompression

MicroPython-specific libraries

Functionality specific to the MicroPython implementation is available in
the following libraries.

	btree – simple BTree database

	framebuf — Frame buffer manipulation

	micropython – access and control MicroPython internals

	network — network configuration

	uctypes – access binary data in a structured way

Libraries specific to the ESP8266

The following libraries are specific to the ESP8266.

	esp — functions related to the ESP8266
	Functions

 Builtin functions and exceptions

Builtin functions and exceptions

Warning

These builtins are inherited from MicroPython and may not work in CircuitPython
as documented or at all! If work differently from CPython, then their behavior
may change.

All builtin functions and exceptions are described here. They are also
available via builtins module.

Functions and types

	
abs()

	

	
all()

	

	
any()

	

	
bin()

	

	
class bool

	

	
class bytearray

	

	
class bytes

	|see_cpython| bytes.

	
callable()

	

	
chr()

	

	
classmethod()

	

	
compile()

	

	
class complex

	

	
delattr(obj, name)

	The argument name should be a string, and this function deletes the named
attribute from the object given by obj.

	
class dict

	

	
dir()

	

	
divmod()

	

	
enumerate()

	

	
eval()

	

	
exec()

	

	
filter()

	

	
class float

	

	
class frozenset

	

	
getattr()

	

	
globals()

	

	
hasattr()

	

	
hash()

	

	
hex()

	

	
id()

	

	
input()

	

	
class int

	
	
classmethod from_bytes(bytes, byteorder)

	In MicroPython, byteorder parameter must be positional (this is
compatible with CPython).

	
to_bytes(size, byteorder)

	In MicroPython, byteorder parameter must be positional (this is
compatible with CPython).

	
isinstance()

	

	
issubclass()

	

	
iter()

	

	
len()

	

	
class list

	

	
locals()

	

	
map()

	

	
max()

	

	
class memoryview

	

	
min()

	

	
next()

	

	
class object

	

	
oct()

	

	
open()

	

	
ord()

	

	
pow()

	

	
print()

	

	
property()

	

	
range()

	

	
repr()

	

	
reversed()

	

	
round()

	

	
class set

	

	
setattr()

	

	
class slice

	The slice builtin is the type that slice objects have.

	
sorted()

	

	
staticmethod()

	

	
class str

	

	
sum()

	

	
super()

	

	
class tuple

	

	
type()

	

	
zip()

	

Exceptions

	
exception AssertionError

	

	
exception AttributeError

	

	
exception Exception

	

	
exception ImportError

	

	
exception IndexError

	

	
exception KeyboardInterrupt

	

	
exception KeyError

	

	
exception MemoryError

	

	
exception NameError

	

	
exception NotImplementedError

	

	
exception OSError

	|see_cpython| OSError. MicroPython doesn’t implement errno
attribute, instead use the standard way to access exception arguments:
exc.args[0].

	
exception RuntimeError

	

	
exception StopIteration

	

	
exception SyntaxError

	

	
exception SystemExit

	|see_cpython| python:SystemExit.

	
exception TypeError

	|see_cpython| python:TypeError.

	
exception ValueError

	

	
exception ZeroDivisionError

	

 array – arrays of numeric data

array – arrays of numeric data

Warning

This module is inherited from MicroPython and may not work in CircuitPython
as documented or at all! If they do work, they may change at any time. It is
unsupported.

|see_cpython_module| cpython:array.

Supported format codes: b, B, h, H, i, I, l,
L, q, Q, f, d (the latter 2 depending on the
floating-point support).

Classes

	
class array.array(typecode[, iterable])

	Create array with elements of given type. Initial contents of the
array are given by an iterable. If it is not provided, an empty
array is created.

	
append(val)

	Append new element to the end of array, growing it.

	
extend(iterable)

	Append new elements as contained in an iterable to the end of
array, growing it.

 gc – control the garbage collector

gc – control the garbage collector

Warning

This module is inherited from MicroPython and may not work in CircuitPython
as documented or at all! If they do work, they may change at any time. It is
unsupported.

|see_cpython_module| cpython:gc.

Functions

	
gc.enable()

	Enable automatic garbage collection.

	
gc.disable()

	Disable automatic garbage collection. Heap memory can still be allocated,
and garbage collection can still be initiated manually using gc.collect().

	
gc.collect()

	Run a garbage collection.

	
gc.mem_alloc()

	Return the number of bytes of heap RAM that are allocated.

Difference to CPython

This function is MicroPython extension.

	
gc.mem_free()

	Return the number of bytes of available heap RAM, or -1 if this amount
is not known.

Difference to CPython

This function is MicroPython extension.

	
gc.threshold([amount])

	Set or query the additional GC allocation threshold. Normally, a collection
is triggered only when a new allocation cannot be satisfied, i.e. on an
out-of-memory (OOM) condition. If this function is called, in addition to
OOM, a collection will be triggered each time after amount bytes have been
allocated (in total, since the previous time such an amount of bytes
have been allocated). amount is usually specified as less than the
full heap size, with the intention to trigger a collection earlier than when the
heap becomes exhausted, and in the hope that an early collection will prevent
excessive memory fragmentation. This is a heuristic measure, the effect
of which will vary from application to application, as well as
the optimal value of the amount parameter.

Calling the function without argument will return the current value of
the threshold. A value of -1 means a disabled allocation threshold.

Difference to CPython

This function is a MicroPython extension. CPython has a similar
function - set_threshold(), but due to different GC
implementations, its signature and semantics are different.

 math – mathematical functions

math – mathematical functions

Warning

This module is inherited from MicroPython and may not work in CircuitPython
as documented or at all! If they do work, they may change at any time. It is
unsupported.

|see_cpython_module| cpython:math.

The math module provides some basic mathematical functions for
working with floating-point numbers.

Note: On the pyboard, floating-point numbers have 32-bit precision.

Availability: not available on WiPy. Floating point support required
for this module.

Functions

	
math.acos(x)

	Return the inverse cosine of x.

	
math.acosh(x)

	Return the inverse hyperbolic cosine of x.

	
math.asin(x)

	Return the inverse sine of x.

	
math.asinh(x)

	Return the inverse hyperbolic sine of x.

	
math.atan(x)

	Return the inverse tangent of x.

	
math.atan2(y, x)

	Return the principal value of the inverse tangent of y/x.

	
math.atanh(x)

	Return the inverse hyperbolic tangent of x.

	
math.ceil(x)

	Return an integer, being x rounded towards positive infinity.

	
math.copysign(x, y)

	Return x with the sign of y.

	
math.cos(x)

	Return the cosine of x.

	
math.cosh(x)

	Return the hyperbolic cosine of x.

	
math.degrees(x)

	Return radians x converted to degrees.

	
math.erf(x)

	Return the error function of x.

	
math.erfc(x)

	Return the complementary error function of x.

	
math.exp(x)

	Return the exponential of x.

	
math.expm1(x)

	Return exp(x) - 1.

	
math.fabs(x)

	Return the absolute value of x.

	
math.floor(x)

	Return an integer, being x rounded towards negative infinity.

	
math.fmod(x, y)

	Return the remainder of x/y.

	
math.frexp(x)

	Decomposes a floating-point number into its mantissa and exponent.
The returned value is the tuple (m, e) such that x == m * 2**e
exactly. If x == 0 then the function returns (0.0, 0), otherwise
the relation 0.5 <= abs(m) < 1 holds.

	
math.gamma(x)

	Return the gamma function of x.

	
math.isfinite(x)

	Return True if x is finite.

	
math.isinf(x)

	Return True if x is infinite.

	
math.isnan(x)

	Return True if x is not-a-number

	
math.ldexp(x, exp)

	Return x * (2**exp).

	
math.lgamma(x)

	Return the natural logarithm of the gamma function of x.

	
math.log(x)

	Return the natural logarithm of x.

	
math.log10(x)

	Return the base-10 logarithm of x.

	
math.log2(x)

	Return the base-2 logarithm of x.

	
math.modf(x)

	Return a tuple of two floats, being the fractional and integral parts of
x. Both return values have the same sign as x.

	
math.pow(x, y)

	Returns x to the power of y.

	
math.radians(x)

	Return degrees x converted to radians.

	
math.sin(x)

	Return the sine of x.

	
math.sinh(x)

	Return the hyperbolic sine of x.

	
math.sqrt(x)

	Return the square root of x.

	
math.tan(x)

	Return the tangent of x.

	
math.tanh(x)

	Return the hyperbolic tangent of x.

	
math.trunc(x)

	Return an integer, being x rounded towards 0.

Constants

	
math.e

	base of the natural logarithm

	
math.pi

	the ratio of a circle’s circumference to its diameter

 sys – system specific functions

sys – system specific functions

Warning

This module is inherited from MicroPython and may not work in CircuitPython
as documented or at all! If they do work, they may change at any time. It is
unsupported.

|see_cpython_module| cpython:sys.

Functions

	
sys.exit(retval=0)

	Terminate current program with a given exit code. Underlyingly, this
function raise as SystemExit exception. If an argument is given, its
value given as an argument to SystemExit.

	
sys.print_exception(exc, file=sys.stdout)

	Print exception with a traceback to a file-like object file (or
sys.stdout by default).

Difference to CPython

This is simplified version of a function which appears in the
traceback module in CPython. Unlike traceback.print_exception(),
this function takes just exception value instead of exception type,
exception value, and traceback object; file argument should be
positional; further arguments are not supported.

Constants

	
sys.argv

	A mutable list of arguments the current program was started with.

	
sys.byteorder

	The byte order of the system ("little" or "big").

	
sys.implementation

	Object with information about the current Python implementation. For
MicroPython, it has following attributes:

	name - string “micropython”

	version - tuple (major, minor, micro), e.g. (1, 7, 0)

This object is the recommended way to distinguish MicroPython from other
Python implementations (note that it still may not exist in the very
minimal ports).

Difference to CPython

CPython mandates more attributes for this object, but the actual useful
bare minimum is implemented in MicroPython.

	
sys.maxsize

	Maximum value which a native integer type can hold on the current platform,
or maximum value representable by MicroPython integer type, if it’s smaller
than platform max value (that is the case for MicroPython ports without
long int support).

This attribute is useful for detecting “bitness” of a platform (32-bit vs
64-bit, etc.). It’s recommended to not compare this attribute to some
value directly, but instead count number of bits in it:

bits = 0
v = sys.maxsize
while v:
 bits += 1
 v >>= 1
if bits > 32:
 # 64-bit (or more) platform
 ...
else:
 # 32-bit (or less) platform
 # Note that on 32-bit platform, value of bits may be less than 32
 # (e.g. 31) due to peculiarities described above, so use "> 16",
 # "> 32", "> 64" style of comparisons.

	
sys.modules

	Dictionary of loaded modules. On some ports, it may not include builtin
modules.

	
sys.path

	A mutable list of directories to search for imported modules.

	
sys.platform

	The platform that MicroPython is running on. For OS/RTOS ports, this is
usually an identifier of the OS, e.g. "linux". For baremetal ports it
is an identifier of a board, e.g. "pyboard" for the original MicroPython
reference board. It thus can be used to distinguish one board from another.
If you need to check whether your program runs on MicroPython (vs other
Python implementation), use sys.implementation instead.

	
sys.stderr

	Standard error stream.

	
sys.stdin

	Standard input stream.

	
sys.stdout

	Standard output stream.

	
sys.version

	Python language version that this implementation conforms to, as a string.

	
sys.version_info

	Python language version that this implementation conforms to, as a tuple of ints.

 ubinascii – binary/ASCII conversions

ubinascii – binary/ASCII conversions

Warning

This module is inherited from MicroPython and may not work in CircuitPython
as documented or at all! If they do work, they may change at any time. It is
unsupported.

|see_cpython_module| cpython:binascii.

This module implements conversions between binary data and various
encodings of it in ASCII form (in both directions).

Functions

	
ubinascii.hexlify(data[, sep])

	Convert binary data to hexadecimal representation. Returns bytes string.

Difference to CPython

If additional argument, sep is supplied, it is used as a separator
between hexadecimal values.

	
ubinascii.unhexlify(data)

	Convert hexadecimal data to binary representation. Returns bytes string.
(i.e. inverse of hexlify)

	
ubinascii.a2b_base64(data)

	Decode base64-encoded data, ignoring invalid characters in the input.
Conforms to RFC 2045 s.6.8 [https://tools.ietf.org/html/rfc2045#section-6.8].
Returns a bytes object.

	
ubinascii.b2a_base64(data)

	Encode binary data in base64 format, as in RFC 3548 [https://tools.ietf.org/html/rfc3548.html]. Returns the encoded data
followed by a newline character, as a bytes object.

 ucollections – collection and container types

ucollections – collection and container types

Warning

This module is inherited from MicroPython and may not work in CircuitPython
as documented or at all! If they do work, they may change at any time. It is
unsupported.

|see_cpython_module| cpython:collections.

This module implements advanced collection and container types to
hold/accumulate various objects.

Classes

	
ucollections.namedtuple(name, fields)

	This is factory function to create a new namedtuple type with a specific
name and set of fields. A namedtuple is a subclass of tuple which allows
to access its fields not just by numeric index, but also with an attribute
access syntax using symbolic field names. Fields is a sequence of strings
specifying field names. For compatibility with CPython it can also be a
a string with space-separated field named (but this is less efficient).
Example of use:

from ucollections import namedtuple

MyTuple = namedtuple("MyTuple", ("id", "name"))
t1 = MyTuple(1, "foo")
t2 = MyTuple(2, "bar")
print(t1.name)
assert t2.name == t2[1]

	
ucollections.OrderedDict(...)

	dict type subclass which remembers and preserves the order of keys
added. When ordered dict is iterated over, keys/items are returned in
the order they were added:

from ucollections import OrderedDict

To make benefit of ordered keys, OrderedDict should be initialized
from sequence of (key, value) pairs.
d = OrderedDict([("z", 1), ("a", 2)])
More items can be added as usual
d["w"] = 5
d["b"] = 3
for k, v in d.items():
 print(k, v)

Output:

z 1
a 2
w 5
b 3

 uerrno – system error codes

uerrno – system error codes

Warning

This module is inherited from MicroPython and may not work in CircuitPython
as documented or at all! If they do work, they may change at any time. It is
unsupported.

|see_cpython_module| cpython:errno.

This module provides access to symbolic error codes for OSError exception.

Constants

	
EEXIST, EAGAIN, etc.

	Error codes, based on ANSI C/POSIX standard. All error codes start with
“E”. Errors are usually accessible as exc.args[0]
where exc is an instance of OSError. Usage example:

try:
 os.mkdir("my_dir")
except OSError as exc:
 if exc.args[0] == uerrno.EEXIST:
 print("Directory already exists")

	
uerrno.errorcode

	Dictionary mapping numeric error codes to strings with symbolic error
code (see above):

>>> print(uerrno.errorcode[uerrno.EEXIST])
EEXIST

 uhashlib – hashing algorithms

uhashlib – hashing algorithms

Warning

This module is inherited from MicroPython and may not work in CircuitPython
as documented or at all! If they do work, they may change at any time. It is
unsupported.

|see_cpython_module| cpython:hashlib.

This module implements binary data hashing algorithms. The exact inventory
of available algorithms depends on a board. Among the algorithms which may
be implemented:

	SHA256 - The current generation, modern hashing algorithm (of SHA2 series).
It is suitable for cryptographically-secure purposes. Included in the
MicroPython core and any board is recommended to provide this, unless
it has particular code size constraints.

	SHA1 - A previous generation algorithm. Not recommended for new usages,
but SHA1 is a part of number of Internet standards and existing
applications, so boards targeting network connectivity and
interoperatiability will try to provide this.

	MD5 - A legacy algorithm, not considered cryptographically secure. Only
selected boards, targeting interoperatibility with legacy applications,
will offer this.

Constructors

	
class uhashlib.sha256([data])

	Create an SHA256 hasher object and optionally feed data into it.

	
class uhashlib.sha1([data])

	Create an SHA1 hasher object and optionally feed data into it.

	
class uhashlib.md5([data])

	Create an MD5 hasher object and optionally feed data into it.

Methods

	
hash.update(data)

	Feed more binary data into hash.

	
hash.digest()

	Return hash for all data passed through hash, as a bytes object. After this
method is called, more data cannot be fed into the hash any longer.

	
hash.hexdigest()

	This method is NOT implemented. Use ubinascii.hexlify(hash.digest())
to achieve a similar effect.

 uheapq – heap queue algorithm

uheapq – heap queue algorithm

Warning

This module is inherited from MicroPython and may not work in CircuitPython
as documented or at all! If they do work, they may change at any time. It is
unsupported.

|see_cpython_module| cpython:heapq.

This module implements the heap queue algorithm.

A heap queue is simply a list that has its elements stored in a certain way.

Functions

	
uheapq.heappush(heap, item)

	Push the item onto the heap.

	
uheapq.heappop(heap)

	Pop the first item from the heap, and return it. Raises IndexError if
heap is empty.

	
uheapq.heapify(x)

	Convert the list x into a heap. This is an in-place operation.

 uio – input/output streams

uio – input/output streams

Warning

This module is inherited from MicroPython and may not work in CircuitPython
as documented or at all! If they do work, they may change at any time. It is
unsupported.

|see_cpython_module| cpython:io.

This module contains additional types of stream (file-like) objects
and helper functions.

Conceptual hierarchy

Difference to CPython

Conceptual hierarchy of stream base classes is simplified in MicroPython,
as described in this section.

(Abstract) base stream classes, which serve as a foundation for behavior
of all the concrete classes, adhere to few dichotomies (pair-wise
classifications) in CPython. In MicroPython, they are somewhat simplified
and made implicit to achieve higher efficiencies and save resources.

An important dichotomy in CPython is unbuffered vs buffered streams. In
MicroPython, all streams are currently unbuffered. This is because all
modern OSes, and even many RTOSes and filesystem drivers already perform
buffering on their side. Adding another layer of buffering is counter-
productive (an issue known as “bufferbloat”) and takes precious memory.
Note that there still cases where buffering may be useful, so we may
introduce optional buffering support at a later time.

But in CPython, another important dichotomy is tied with “bufferedness” -
it’s whether a stream may incur short read/writes or not. A short read
is when a user asks e.g. 10 bytes from a stream, but gets less, similarly
for writes. In CPython, unbuffered streams are automatically short
operation susceptible, while buffered are guarantee against them. The
no short read/writes is an important trait, as it allows to develop
more concise and efficient programs - something which is highly desirable
for MicroPython. So, while MicroPython doesn’t support buffered streams,
it still provides for no-short-operations streams. Whether there will
be short operations or not depends on each particular class’ needs, but
developers are strongly advised to favor no-short-operations behavior
for the reasons stated above. For example, MicroPython sockets are
guaranteed to avoid short read/writes. Actually, at this time, there is
no example of a short-operations stream class in the core, and one would
be a port-specific class, where such a need is governed by hardware
peculiarities.

The no-short-operations behavior gets tricky in case of non-blocking
streams, blocking vs non-blocking behavior being another CPython dichotomy,
fully supported by MicroPython. Non-blocking streams never wait for
data either to arrive or be written - they read/write whatever possible,
or signal lack of data (or ability to write data). Clearly, this conflicts
with “no-short-operations” policy, and indeed, a case of non-blocking
buffered (and this no-short-ops) streams is convoluted in CPython - in
some places, such combination is prohibited, in some it’s undefined or
just not documented, in some cases it raises verbose exceptions. The
matter is much simpler in MicroPython: non-blocking stream are important
for efficient asynchronous operations, so this property prevails on
the “no-short-ops” one. So, while blocking streams will avoid short
reads/writes whenever possible (the only case to get a short read is
if end of file is reached, or in case of error (but errors don’t
return short data, but raise exceptions)), non-blocking streams may
produce short data to avoid blocking the operation.

The final dichotomy is binary vs text streams. MicroPython of course
supports these, but while in CPython text streams are inherently
buffered, they aren’t in MicroPython. (Indeed, that’s one of the cases
for which we may introduce buffering support.)

Note that for efficiency, MicroPython doesn’t provide abstract base
classes corresponding to the hierarchy above, and it’s not possible
to implement, or subclass, a stream class in pure Python.

Functions

	
uio.open(name, mode='r', **kwargs)

	Open a file. Builtin open() function is aliased to this function.
All ports (which provide access to file system) are required to support
mode parameter, but support for other arguments vary by port.

Classes

	
class uio.FileIO(...)

	This is type of a file open in binary mode, e.g. using open(name, "rb").
You should not instantiate this class directly.

	
class uio.TextIOWrapper(...)

	This is type of a file open in text mode, e.g. using open(name, "rt").
You should not instantiate this class directly.

	
class uio.StringIO([string])

	

	
class uio.BytesIO([string])

	In-memory file-like objects for input/output. StringIO is used for
text-mode I/O (similar to a normal file opened with “t” modifier).
BytesIO is used for binary-mode I/O (similar to a normal file
opened with “b” modifier). Initial contents of file-like objects
can be specified with string parameter (should be normal string
for StringIO or bytes object for BytesIO). All the usual file
methods like read(), write(), seek(), flush(),
close() are available on these objects, and additionally, a
following method:

	
getvalue()

	Get the current contents of the underlying buffer which holds data.

 ujson – JSON encoding and decoding

ujson – JSON encoding and decoding

Warning

This module is inherited from MicroPython and may not work in CircuitPython
as documented or at all! If they do work, they may change at any time. It is
unsupported.

|see_cpython_module| cpython:json.

This modules allows to convert between Python objects and the JSON
data format.

Functions

	
ujson.dumps(obj)

	Return obj represented as a JSON string.

	
ujson.loads(str)

	Parse the JSON str and return an object. Raises ValueError if the
string is not correctly formed.

 ure – simple regular expressions

ure – simple regular expressions

Warning

This module is inherited from MicroPython and may not work in CircuitPython
as documented or at all! If they do work, they may change at any time. It is
unsupported.

|see_cpython_module| cpython:re.

This module implements regular expression operations. Regular expression
syntax supported is a subset of CPython re module (and actually is
a subset of POSIX extended regular expressions).

Supported operators are:

	'.'

	Match any character.

	'[]'

	Match set of characters. Individual characters and ranges are supported.

'^'

'$'

'?'

'*'

'+'

'??'

'*?'

'+?'

	'()'

	Grouping. Each group is capturing (a substring it captures can be accessed
with match.group() method).

Counted repetitions ({m,n}), more advanced assertions, named groups,
etc. are not supported.

Functions

	
ure.compile(regex_str)

	Compile regular expression, return regex <regex> object.

	
ure.match(regex_str, string)

	Compile regex_str and match against string. Match always happens
from starting position in a string.

	
ure.search(regex_str, string)

	Compile regex_str and search it in a string. Unlike match, this will search
string for first position which matches regex (which still may be
0 if regex is anchored).

	
ure.DEBUG

	Flag value, display debug information about compiled expression.

Regex objects

Compiled regular expression. Instances of this class are created using
ure.compile().

	
regex.match(string)

	
regex.search(string)

	Similar to the module-level functions match() and search().
Using methods is (much) more efficient if the same regex is applied to
multiple strings.

	
regex.split(string, max_split=-1)

	Split a string using regex. If max_split is given, it specifies
maximum number of splits to perform. Returns list of strings (there
may be up to max_split+1 elements if it’s specified).

Match objects

Match objects as returned by match() and search() methods.

	
match.group([index])

	Return matching (sub)string. index is 0 for entire match,
1 and above for each capturing group. Only numeric groups are supported.

 uselect – wait for events on a set of streams

uselect – wait for events on a set of streams

Warning

This module is inherited from MicroPython and may not work in CircuitPython
as documented or at all! If they do work, they may change at any time. It is
unsupported.

|see_cpython_module| cpython:select.

This module provides functions to efficiently wait for events on multiple
streams (select streams which are ready for operations).

Functions

	
uselect.poll()

	Create an instance of the Poll class.

	
uselect.select(rlist, wlist, xlist[, timeout])

	Wait for activity on a set of objects.

This function is provided by some MicroPython ports for compatibility
and is not efficient. Usage of Poll is recommended instead.

class Poll

Methods

	
poll.register(obj[, eventmask])

	Register obj for polling. eventmask is logical OR of:

	select.POLLIN - data available for reading

	select.POLLOUT - more data can be written

	select.POLLERR - error occurred

	select.POLLHUP - end of stream/connection termination detected

eventmask defaults to select.POLLIN | select.POLLOUT.

	
poll.unregister(obj)

	Unregister obj from polling.

	
poll.modify(obj, eventmask)

	Modify the eventmask for obj.

	
poll.poll([timeout])

	Wait for at least one of the registered objects to become ready. Returns
list of (obj, event, …) tuples, event element specifies
which events happened with a stream and is a combination of select.POLL*
constants described above. There may be other elements in tuple, depending
on a platform and version, so don’t assume that its size is 2. In case of
timeout, an empty list is returned.

Timeout is in milliseconds.

Difference to CPython

Tuples returned may contain more than 2 elements as described above.

	
poll.ipoll([timeout])

	Like poll.poll(), but instead returns an iterator which yields
callee-owned tuples. This function provides efficient, allocation-free
way to poll on streams.

Difference to CPython

This function is a MicroPython extension.

 usocket – socket module

usocket – socket module

Warning

This module is inherited from MicroPython and may not work in CircuitPython
as documented or at all! If they do work, they may change at any time. It is
unsupported.

|see_cpython_module| cpython:socket.

This module provides access to the BSD socket interface.

Difference to CPython

For efficiency and consistency, socket objects in MicroPython implement a stream
(file-like) interface directly. In CPython, you need to convert a socket to
a file-like object using makefile() method. This method is still supported
by MicroPython (but is a no-op), so where compatibility with CPython matters,
be sure to use it.

Socket address format(s)

The native socket address format of the usocket module is an opaque data type
returned by getaddrinfo function, which must be used to resolve textual address
(including numeric addresses):

sockaddr = usocket.getaddrinfo('www.micropython.org', 80)[0][-1]
You must use getaddrinfo() even for numeric addresses
sockaddr = usocket.getaddrinfo('127.0.0.1', 80)[0][-1]
Now you can use that address
sock.connect(addr)

Using getaddrinfo is the most efficient (both in terms of memory and processing
power) and portable way to work with addresses.

However, socket module (note the difference with native MicroPython
usocket module described here) provides CPython-compatible way to specify
addresses using tuples, as described below.

Summing up:

	Always use getaddrinfo when writing portable applications.

	Tuple addresses described below can be used as a shortcut for
quick hacks and interactive use, if your port supports them.

Tuple address format for socket module:

	IPv4: (ipv4_address, port), where ipv4_address is a string with
dot-notation numeric IPv4 address, e.g. "8.8.8.8", and port is and
integer port number in the range 1-65535. Note the domain names are not
accepted as ipv4_address, they should be resolved first using
usocket.getaddrinfo().

	IPv6: (ipv6_address, port, flowinfo, scopeid), where ipv6_address
is a string with colon-notation numeric IPv6 address, e.g. "2001:db8::1",
and port is an integer port number in the range 1-65535. flowinfo
must be 0. scopeid is the interface scope identifier for link-local
addresses. Note the domain names are not accepted as ipv6_address,
they should be resolved first using usocket.getaddrinfo().

Functions

	
usocket.socket(af=AF_INET, type=SOCK_STREAM, proto=IPPROTO_TCP)

	Create a new socket using the given address family, socket type and protocol number.

	
usocket.getaddrinfo(host, port)

	Translate the host/port argument into a sequence of 5-tuples that contain all the
necessary arguments for creating a socket connected to that service. The list of
5-tuples has following structure:

(family, type, proto, canonname, sockaddr)

The following example shows how to connect to a given url:

s = socket.socket()
s.connect(socket.getaddrinfo('www.micropython.org', 80)[0][-1])

Difference to CPython

CPython raises a socket.gaierror exception (OSError subclass) in case
of error in this function. MicroPython doesn’t have socket.gaierror
and raises OSError directly. Note that error numbers of getaddrinfo()
form a separate namespace and may not match error numbers from
uerrno module. To distinguish getaddrinfo() errors, they are
represented by negative numbers, whereas standard system errors are
positive numbers (error numbers are accessible using e.args[0] property
from an exception object). The use of negative values is a provisional
detail which may change in the future.

Constants

	
usocket.AF_INET

	
usocket.AF_INET6

	Address family types. Availability depends on a particular board.

	
usocket.SOCK_STREAM

	
usocket.SOCK_DGRAM

	Socket types.

	
usocket.IPPROTO_UDP

	
usocket.IPPROTO_TCP

	IP protocol numbers.

	
usocket.SOL_*

	Socket option levels (an argument to setsockopt()). The exact
inventory depends on a MicroPython port.

	
usocket.SO_*

	Socket options (an argument to setsockopt()). The exact
inventory depends on a MicroPython port.

Constants specific to WiPy:

	
usocket.IPPROTO_SEC

	Special protocol value to create SSL-compatible socket.

class socket

Methods

	
socket.close()

	Mark the socket closed and release all resources. Once that happens, all future operations
on the socket object will fail. The remote end will receive EOF indication if
supported by protocol.

Sockets are automatically closed when they are garbage-collected, but it is recommended
to close() them explicitly as soon you finished working with them.

	
socket.bind(address)

	Bind the socket to address. The socket must not already be bound.

	
socket.listen([backlog])

	Enable a server to accept connections. If backlog is specified, it must be at least 0
(if it’s lower, it will be set to 0); and specifies the number of unaccepted connections
that the system will allow before refusing new connections. If not specified, a default
reasonable value is chosen.

	
socket.accept()

	Accept a connection. The socket must be bound to an address and listening for connections.
The return value is a pair (conn, address) where conn is a new socket object usable to send
and receive data on the connection, and address is the address bound to the socket on the
other end of the connection.

	
socket.connect(address)

	Connect to a remote socket at address.

	
socket.send(bytes)

	Send data to the socket. The socket must be connected to a remote socket.
Returns number of bytes sent, which may be smaller than the length of data
(“short write”).

	
socket.sendall(bytes)

	Send all data to the socket. The socket must be connected to a remote socket.
Unlike send(), this method will try to send all of data, by sending data
chunk by chunk consecutively.

The behavior of this method on non-blocking sockets is undefined. Due to this,
on MicroPython, it’s recommended to use write() method instead, which
has the same “no short writes” policy for blocking sockets, and will return
number of bytes sent on non-blocking sockets.

	
socket.recv(bufsize)

	Receive data from the socket. The return value is a bytes object representing the data
received. The maximum amount of data to be received at once is specified by bufsize.

	
socket.sendto(bytes, address)

	Send data to the socket. The socket should not be connected to a remote socket, since the
destination socket is specified by address.

	
socket.recvfrom(bufsize)

	Receive data from the socket. The return value is a pair (bytes, address) where bytes is a
bytes object representing the data received and address is the address of the socket sending
the data.

	
socket.setsockopt(level, optname, value)

	Set the value of the given socket option. The needed symbolic constants are defined in the
socket module (SO_* etc.). The value can be an integer or a bytes-like object representing
a buffer.

	
socket.settimeout(value)

	Set a timeout on blocking socket operations. The value argument can be a nonnegative floating
point number expressing seconds, or None. If a non-zero value is given, subsequent socket operations
will raise an OSError exception if the timeout period value has elapsed before the operation has
completed. If zero is given, the socket is put in non-blocking mode. If None is given, the socket
is put in blocking mode.

Difference to CPython

CPython raises a socket.timeout exception in case of timeout,
which is an OSError subclass. MicroPython raises an OSError directly
instead. If you use except OSError: to catch the exception,
your code will work both in MicroPython and CPython.

	
socket.setblocking(flag)

	Set blocking or non-blocking mode of the socket: if flag is false, the socket is set to non-blocking,
else to blocking mode.

This method is a shorthand for certain settimeout() calls:

	sock.setblocking(True) is equivalent to sock.settimeout(None)

	sock.setblocking(False) is equivalent to sock.settimeout(0)

	
socket.makefile(mode='rb', buffering=0)

	Return a file object associated with the socket. The exact returned type depends on the arguments
given to makefile(). The support is limited to binary modes only (‘rb’, ‘wb’, and ‘rwb’).
CPython’s arguments: encoding, errors and newline are not supported.

Difference to CPython

As MicroPython doesn’t support buffered streams, values of buffering
parameter is ignored and treated as if it was 0 (unbuffered).

Difference to CPython

Closing the file object returned by makefile() WILL close the
original socket as well.

	
socket.read([size])

	Read up to size bytes from the socket. Return a bytes object. If size is not given, it
reads all data available from the socket until EOF; as such the method will not return until
the socket is closed. This function tries to read as much data as
requested (no “short reads”). This may be not possible with
non-blocking socket though, and then less data will be returned.

	
socket.readinto(buf[, nbytes])

	Read bytes into the buf. If nbytes is specified then read at most
that many bytes. Otherwise, read at most len(buf) bytes. Just as
read(), this method follows “no short reads” policy.

Return value: number of bytes read and stored into buf.

	
socket.readline()

	Read a line, ending in a newline character.

Return value: the line read.

	
socket.write(buf)

	Write the buffer of bytes to the socket. This function will try to
write all data to a socket (no “short writes”). This may be not possible
with a non-blocking socket though, and returned value will be less than
the length of buf.

Return value: number of bytes written.

	
exception socket.error

	MicroPython does NOT have this exception.

Difference to CPython

CPython used to have a socket.error exception which is now deprecated,
and is an alias of OSError. In MicroPython, use OSError directly.

 ussl – SSL/TLS module

ussl – SSL/TLS module

Warning

This module is inherited from MicroPython and may not work in CircuitPython
as documented or at all! If they do work, they may change at any time. It is
unsupported.

|see_cpython_module| cpython:ssl.

This module provides access to Transport Layer Security (previously and
widely known as “Secure Sockets Layer”) encryption and peer authentication
facilities for network sockets, both client-side and server-side.

Functions

	
ssl.wrap_socket(sock, server_side=False, keyfile=None, certfile=None, cert_reqs=CERT_NONE, ca_certs=None)

	Takes a stream sock (usually usocket.socket instance of SOCK_STREAM type),
and returns an instance of ssl.SSLSocket, which wraps the underlying stream in
an SSL context. Returned object has the usual stream interface methods like
read(), write(), etc. In MicroPython, the returned object does not expose
socket interface and methods like recv(), send(). In particular, a
server-side SSL socket should be created from a normal socket returned from
accept() on a non-SSL listening server socket.

Depending on the underlying module implementation for a particular board,
some or all keyword arguments above may be not supported.

Warning

Some implementations of ssl module do NOT validate server certificates,
which makes an SSL connection established prone to man-in-the-middle attacks.

Exceptions

	
ssl.SSLError

	This exception does NOT exist. Instead its base class, OSError, is used.

Constants

	
ssl.CERT_NONE

	
ssl.CERT_OPTIONAL

	
ssl.CERT_REQUIRED

	Supported values for cert_reqs parameter.

 ustruct – pack and unpack primitive data types

ustruct – pack and unpack primitive data types

Warning

This module is inherited from MicroPython and may not work in CircuitPython
as documented or at all! If they do work, they may change at any time. It is
unsupported.

|see_cpython_module| cpython:struct.

Supported size/byte order prefixes: @, <, >, !.

Supported format codes: b, B, h, H, i, I, l,
L, q, Q, s, P, f, d (the latter 2 depending
on the floating-point support).

Functions

	
ustruct.calcsize(fmt)

	Return the number of bytes needed to store the given fmt.

	
ustruct.pack(fmt, v1, v2, ...)

	Pack the values v1, v2, … according to the format string fmt.
The return value is a bytes object encoding the values.

	
ustruct.pack_into(fmt, buffer, offset, v1, v2, ...)

	Pack the values v1, v2, … according to the format string fmt
into a buffer starting at offset. offset may be negative to count
from the end of buffer.

	
ustruct.unpack(fmt, data)

	Unpack from the data according to the format string fmt.
The return value is a tuple of the unpacked values.

	
ustruct.unpack_from(fmt, data, offset=0)

	Unpack from the data starting at offset according to the format string
fmt. offset may be negative to count from the end of buffer. The return
value is a tuple of the unpacked values.

 uzlib – zlib decompression

uzlib – zlib decompression

Warning

This module is inherited from MicroPython and may not work in CircuitPython
as documented or at all! If they do work, they may change at any time. It is
unsupported.

|see_cpython_module| cpython:zlib.

This module allows to decompress binary data compressed with
DEFLATE algorithm [https://en.wikipedia.org/wiki/DEFLATE]
(commonly used in zlib library and gzip archiver). Compression
is not yet implemented.

Functions

	
uzlib.decompress(data, wbits=0, bufsize=0)

	Return decompressed data as bytes. wbits is DEFLATE dictionary window
size used during compression (8-15, the dictionary size is power of 2 of
that value). Additionally, if value is positive, data is assumed to be
zlib stream (with zlib header). Otherwise, if it’s negative, it’s assumed
to be raw DEFLATE stream. bufsize parameter is for compatibility with
CPython and is ignored.

	
class uzlib.DecompIO(stream, wbits=0)

	Create a stream wrapper which allows transparent decompression of
compressed data in another stream. This allows to process compressed
streams with data larger than available heap size. In addition to
values described in decompress(), wbits may take values
24..31 (16 + 8..15), meaning that input stream has gzip header.

Difference to CPython

This class is MicroPython extension. It’s included on provisional
basis and may be changed considerably or removed in later versions.

 btree – simple BTree database

btree – simple BTree database

Warning

This module is inherited from MicroPython and may not work in CircuitPython
as documented or at all! If they do work, they may change at any time. It is
unsupported.

The btree module implements a simple key-value database using external
storage (disk files, or in general case, a random-access stream). Keys are
stored sorted in the database, and besides efficient retrieval by a key
value, a database also supports efficient ordered range scans (retrieval
of values with the keys in a given range). On the application interface
side, BTree database work as close a possible to a way standard dict
type works, one notable difference is that both keys and values must
be bytes objects (so, if you want to store objects of other types, you
need to serialize them to bytes first).

The module is based on the well-known BerkelyDB library, version 1.xx.

Example:

import btree

First, we need to open a stream which holds a database
This is usually a file, but can be in-memory database
using uio.BytesIO, a raw flash partition, etc.
Oftentimes, you want to create a database file if it doesn't
exist and open if it exists. Idiom below takes care of this.
DO NOT open database with "a+b" access mode.
try:
 f = open("mydb", "r+b")
except OSError:
 f = open("mydb", "w+b")

Now open a database itself
db = btree.open(f)

The keys you add will be sorted internally in the database
db[b"3"] = b"three"
db[b"1"] = b"one"
db[b"2"] = b"two"

Assume that any changes are cached in memory unless
explicitly flushed (or database closed). Flush database
at the end of each "transaction".
db.flush()

Prints b'two'
print(db[b"2"])

Iterate over sorted keys in the database, starting from b"2"
until the end of the database, returning only values.
Mind that arguments passed to values() method are *key* values.
Prints:
b'two'
b'three'
for word in db.values(b"2"):
 print(word)

del db[b"2"]

No longer true, prints False
print(b"2" in db)

Prints:
b"1"
b"3"
for key in db:
 print(key)

db.close()

Don't forget to close the underlying stream!
f.close()

Functions

	
btree.open(stream, *, flags=0, cachesize=0, pagesize=0, minkeypage=0)

	Open a database from a random-access stream (like an open file). All
other parameters are optional and keyword-only, and allow to tweak advanced
parameters of the database operation (most users will not need them):

	flags - Currently unused.

	cachesize - Suggested maximum memory cache size in bytes. For a
board with enough memory using larger values may improve performance.
The value is only a recommendation, the module may use more memory if
values set too low.

	pagesize - Page size used for the nodes in BTree. Acceptable range
is 512-65536. If 0, underlying I/O block size will be used (the best
compromise between memory usage and performance).

	minkeypage - Minimum number of keys to store per page. Default value
of 0 equivalent to 2.

Returns a BTree object, which implements a dictionary protocol (set
of methods), and some additional methods described below.

Methods

	
btree.close()

	Close the database. It’s mandatory to close the database at the end of
processing, as some unwritten data may be still in the cache. Note that
this does not close underlying stream with which the database was opened,
it should be closed separately (which is also mandatory to make sure that
data flushed from buffer to the underlying storage).

	
btree.flush()

	Flush any data in cache to the underlying stream.

	
btree.__getitem__(key)

	
btree.get(key, default=None)

	
btree.__setitem__(key, val)

	
btree.__detitem__(key)

	
btree.__contains__(key)

	Standard dictionary methods.

	
btree.__iter__()

	A BTree object can be iterated over directly (similar to a dictionary)
to get access to all keys in order.

	
btree.keys([start_key[, end_key[, flags]]])

	
btree.values([start_key[, end_key[, flags]]])

	
btree.items([start_key[, end_key[, flags]]])

	These methods are similar to standard dictionary methods, but also can
take optional parameters to iterate over a key sub-range, instead of
the entire database. Note that for all 3 methods, start_key and
end_key arguments represent key values. For example, values()
method will iterate over values corresponding to they key range
given. None values for start_key means “from the first key”, no
end_key or its value of None means “until the end of database”.
By default, range is inclusive of start_key and exclusive of
end_key, you can include end_key in iteration by passing flags
of btree.INCL. You can iterate in descending key direction
by passing flags of btree.DESC. The flags values can be ORed
together.

Constants

	
btree.INCL

	A flag for keys(), values(), items() methods to specify that
scanning should be inclusive of the end key.

	
btree.DESC

	A flag for keys(), values(), items() methods to specify that
scanning should be in descending direction of keys.

 framebuf — Frame buffer manipulation

framebuf — Frame buffer manipulation

Warning

This module is inherited from MicroPython and may not work in CircuitPython
as documented or at all! If they do work, they may change at any time. It is
unsupported.

This module provides a general frame buffer which can be used to create
bitmap images, which can then be sent to a display.

class FrameBuffer

The FrameBuffer class provides a pixel buffer which can be drawn upon with
pixels, lines, rectangles, text and even other FrameBuffer’s. It is useful
when generating output for displays.

For example:

import framebuf

FrameBuffer needs 2 bytes for every RGB565 pixel
fbuf = FrameBuffer(bytearray(10 * 100 * 2), 10, 100, framebuf.RGB565)

fbuf.fill(0)
fbuf.text('MicroPython!', 0, 0, 0xffff)
fbuf.hline(0, 10, 96, 0xffff)

Constructors

	
class framebuf.FrameBuffer(buffer, width, height, format, stride=width)

	Construct a FrameBuffer object. The parameters are:

	buffer is an object with a buffer protocol which must be large
enough to contain every pixel defined by the width, height and
format of the FrameBuffer.

	width is the width of the FrameBuffer in pixels

	height is the height of the FrameBuffer in pixels

	format specifies the type of pixel used in the FrameBuffer;
valid values are framebuf.MVLSB, framebuf.RGB565
and framebuf.GS4_HMSB. MVLSB is monochrome 1-bit color,
RGB565 is RGB 16-bit color, and GS4_HMSB is grayscale 4-bit color.
Where a color value c is passed to a method, c is a small integer
with an encoding that is dependent on the format of the FrameBuffer.

	stride is the number of pixels between each horizontal line
of pixels in the FrameBuffer. This defaults to width but may
need adjustments when implementing a FrameBuffer within another
larger FrameBuffer or screen. The buffer size must accommodate
an increased step size.

One must specify valid buffer, width, height, format and
optionally stride. Invalid buffer size or dimensions may lead to
unexpected errors.

Drawing primitive shapes

The following methods draw shapes onto the FrameBuffer.

	
FrameBuffer.fill(c)

	Fill the entire FrameBuffer with the specified color.

	
FrameBuffer.pixel(x, y[, c])

	If c is not given, get the color value of the specified pixel.
If c is given, set the specified pixel to the given color.

	
FrameBuffer.hline(x, y, w, c)

	

	
FrameBuffer.vline(x, y, h, c)

	

	
FrameBuffer.line(x1, y1, x2, y2, c)

	Draw a line from a set of coordinates using the given color and
a thickness of 1 pixel. The line method draws the line up to
a second set of coordinates whereas the hline and vline
methods draw horizontal and vertical lines respectively up to
a given length.

	
FrameBuffer.rect(x, y, w, h, c)

	

	
FrameBuffer.fill_rect(x, y, w, h, c)

	Draw a rectangle at the given location, size and color. The rect
method draws only a 1 pixel outline whereas the fill_rect method
draws both the outline and interior.

Drawing text

	
FrameBuffer.text(s, x, y[, c])

	Write text to the FrameBuffer using the the coordinates as the upper-left
corner of the text. The color of the text can be defined by the optional
argument but is otherwise a default value of 1. All characters have
dimensions of 8x8 pixels and there is currently no way to change the font.

Other methods

	
FrameBuffer.scroll(xstep, ystep)

	Shift the contents of the FrameBuffer by the given vector. This may
leave a footprint of the previous colors in the FrameBuffer.

	
FrameBuffer.blit(fbuf, x, y[, key])

	Draw another FrameBuffer on top of the current one at the given coordinates.
If key is specified then it should be a color integer and the
corresponding color will be considered transparent: all pixels with that
color value will not be drawn.

This method works between FrameBuffer’s utilising different formats, but the
resulting colors may be unexpected due to the mismatch in color formats.

Constants

	
framebuf.MONO_VLSB

	Monochrome (1-bit) color format
This defines a mapping where the bits in a byte are vertically mapped with
bit 0 being nearest the top of the screen. Consequently each byte occupies
8 vertical pixels. Subsequent bytes appear at successive horizontal
locations until the rightmost edge is reached. Further bytes are rendered
at locations starting at the leftmost edge, 8 pixels lower.

	
framebuf.MONO_HLSB

	Monochrome (1-bit) color format
This defines a mapping where the bits in a byte are horizontally mapped.
Each byte occupies 8 horizontal pixels with bit 0 being the leftmost.
Subsequent bytes appear at successive horizontal locations until the
rightmost edge is reached. Further bytes are rendered on the next row, one
pixel lower.

	
framebuf.MONO_HMSB

	Monochrome (1-bit) color format
This defines a mapping where the bits in a byte are horizontally mapped.
Each byte occupies 8 horizontal pixels with bit 7 being the leftmost.
Subsequent bytes appear at successive horizontal locations until the
rightmost edge is reached. Further bytes are rendered on the next row, one
pixel lower.

	
framebuf.RGB565

	Red Green Blue (16-bit, 5+6+5) color format

	
framebuf.GS4_HMSB

	Grayscale (4-bit) color format

 micropython – access and control MicroPython internals

micropython – access and control MicroPython internals

Warning

This module is inherited from MicroPython and may not work in CircuitPython
as documented or at all! If they do work, they may change at any time. It is
unsupported.

Functions

	
micropython.const(expr)

	Used to declare that the expression is a constant so that the compile can
optimise it. The use of this function should be as follows:

from micropython import const

CONST_X = const(123)
CONST_Y = const(2 * CONST_X + 1)

Constants declared this way are still accessible as global variables from
outside the module they are declared in. On the other hand, if a constant
begins with an underscore then it is hidden, it is not available as a global
variable, and does not take up any memory during execution.

This const function is recognised directly by the MicroPython parser and is
provided as part of the micropython module mainly so that scripts can be
written which run under both CPython and MicroPython, by following the above
pattern.

	
micropython.opt_level([level])

	If level is given then this function sets the optimisation level for subsequent
compilation of scripts, and returns None. Otherwise it returns the current
optimisation level.

	
micropython.alloc_emergency_exception_buf(size)

	Allocate size bytes of RAM for the emergency exception buffer (a good
size is around 100 bytes). The buffer is used to create exceptions in cases
when normal RAM allocation would fail (eg within an interrupt handler) and
therefore give useful traceback information in these situations.

A good way to use this function is to put it at the start of your main script
(eg boot.py or main.py) and then the emergency exception buffer will be active
for all the code following it.

	
micropython.mem_info([verbose])

	Print information about currently used memory. If the verbose` argument
is given then extra information is printed.

The information that is printed is implementation dependent, but currently
includes the amount of stack and heap used. In verbose mode it prints out
the entire heap indicating which blocks are used and which are free.

	
micropython.qstr_info([verbose])

	Print information about currently interned strings. If the verbose
argument is given then extra information is printed.

The information that is printed is implementation dependent, but currently
includes the number of interned strings and the amount of RAM they use. In
verbose mode it prints out the names of all RAM-interned strings.

	
micropython.stack_use()

	Return an integer representing the current amount of stack that is being
used. The absolute value of this is not particularly useful, rather it
should be used to compute differences in stack usage at different points.

	
micropython.heap_lock()

	

	
micropython.heap_unlock()

	Lock or unlock the heap. When locked no memory allocation can occur and a
MemoryError will be raised if any heap allocation is attempted.

These functions can be nested, ie heap_lock() can be called multiple times
in a row and the lock-depth will increase, and then heap_unlock() must be
called the same number of times to make the heap available again.

	
micropython.kbd_intr(chr)

	Set the character that will raise a KeyboardInterrupt exception. By
default this is set to 3 during script execution, corresponding to Ctrl-C.
Passing -1 to this function will disable capture of Ctrl-C, and passing 3
will restore it.

This function can be used to prevent the capturing of Ctrl-C on the
incoming stream of characters that is usually used for the REPL, in case
that stream is used for other purposes.

	
micropython.schedule(func, arg)

	Schedule the function func to be executed “very soon”. The function
is passed the value arg as its single argument. “Very soon” means that
the MicroPython runtime will do its best to execute the function at the
earliest possible time, given that it is also trying to be efficient, and
that the following conditions hold:

	A scheduled function will never preempt another scheduled function.

	Scheduled functions are always executed “between opcodes” which means
that all fundamental Python operations (such as appending to a list)
are guaranteed to be atomic.

	A given port may define “critical regions” within which scheduled
functions will never be executed. Functions may be scheduled within
a critical region but they will not be executed until that region
is exited. An example of a critical region is a preempting interrupt
handler (an IRQ).

A use for this function is to schedule a callback from a preempting IRQ.
Such an IRQ puts restrictions on the code that runs in the IRQ (for example
the heap may be locked) and scheduling a function to call later will lift
those restrictions.

There is a finite stack to hold the scheduled functions and schedule
will raise a RuntimeError if the stack is full.

 network — network configuration

network — network configuration

Warning

This module is inherited from MicroPython and may not work in CircuitPython
as documented or at all! If they do work, they may change at any time. It is
unsupported.

This module provides network drivers and routing configuration. To use this
module, a MicroPython variant/build with network capabilities must be installed.
Network drivers for specific hardware are available within this module and are
used to configure hardware network interface(s). Network services provided
by configured interfaces are then available for use via the socket
module.

For example:

connect/ show IP config a specific network interface
see below for examples of specific drivers
import network
import utime
nic = network.Driver(...)
if not nic.isconnected():
 nic.connect()
 print("Waiting for connection...")
 while not nic.isconnected():
 utime.sleep(1)
print(nic.ifconfig())

now use usocket as usual
import usocket as socket
addr = socket.getaddrinfo('micropython.org', 80)[0][-1]
s = socket.socket()
s.connect(addr)
s.send(b'GET / HTTP/1.1\r\nHost: micropython.org\r\n\r\n')
data = s.recv(1000)
s.close()

Common network adapter interface

This section describes an (implied) abstract base class for all network
interface classes implemented by different ports of MicroPython for
different hardware. This means that MicroPython does not actually
provide AbstractNIC class, but any actual NIC class, as described
in the following sections, implements methods as described here.

	
class network.AbstractNIC(id=None, ...)

	

Instantiate a network interface object. Parameters are network interface
dependent. If there are more than one interface of the same type, the first
parameter should be id.

	
network.active([is_active])

	Activate (“up”) or deactivate (“down”) the network interface, if
a boolean argument is passed. Otherwise, query current state if
no argument is provided. Most other methods require an active
interface (behavior of calling them on inactive interface is
undefined).

	
network.connect([service_id, key=None, *, ...])

	Connect the interface to a network. This method is optional, and
available only for interfaces which are not “always connected”.
If no parameters are given, connect to the default (or the only)
service. If a single parameter is given, it is the primary identifier
of a service to connect to. It may be accompanied by a key
(password) required to access said service. There can be further
arbitrary keyword-only parameters, depending on the networking medium
type and/or particular device. Parameters can be used to: a)
specify alternative service identifer types; b) provide additional
connection parameters. For various medium types, there are different
sets of predefined/recommended parameters, among them:

	WiFi: bssid keyword to connect by BSSID (MAC address) instead
of access point name

	
network.disconnect()

	Disconnect from network.

	
network.isconnected()

	Returns True if connected to network, otherwise returns False.

	
network.scan(*, ...)

	Scan for the available network services/connections. Returns a
list of tuples with discovered service parameters. For various
network media, there are different variants of predefined/
recommended tuple formats, among them:

	WiFi: (ssid, bssid, channel, RSSI, authmode, hidden). There
may be further fields, specific to a particular device.

The function may accept additional keyword arguments to filter scan
results (e.g. scan for a particular service, on a particular channel,
for services of a particular set, etc.), and to affect scan
duration and other parameters. Where possible, parameter names
should match those in connect().

	
network.status()

	Return detailed status of the interface, values are dependent
on the network medium/technology.

	
network.ifconfig([(ip, subnet, gateway, dns)])

	Get/set IP-level network interface parameters: IP address, subnet mask,
gateway and DNS server. When called with no arguments, this method returns
a 4-tuple with the above information. To set the above values, pass a
4-tuple with the required information. For example:

nic.ifconfig(('192.168.0.4', '255.255.255.0', '192.168.0.1', '8.8.8.8'))

	
network.config('param')

	
network.config(param=value, ...)

	Get or set general network interface parameters. These methods allow to work
with additional parameters beyond standard IP configuration (as dealt with by
ifconfig()). These include network-specific and hardware-specific
parameters and status values. For setting parameters, the keyword argument
syntax should be used, and multiple parameters can be set at once. For
querying, a parameter name should be quoted as a string, and only one
parameter can be queried at a time:

Set WiFi access point name (formally known as ESSID) and WiFi channel
ap.config(essid='My AP', channel=11)
Query params one by one
print(ap.config('essid'))
print(ap.config('channel'))
Extended status information also available this way
print(sta.config('rssi'))

Functions

	
network.phy_mode([mode])

	Get or set the PHY mode.

If the mode parameter is provided, sets the mode to its value. If
the function is called without parameters, returns the current mode.

	The possible modes are defined as constants:

	
	MODE_11B – IEEE 802.11b,

	MODE_11G – IEEE 802.11g,

	MODE_11N – IEEE 802.11n.

class WLAN

This class provides a driver for WiFi network processor in the ESP8266. Example usage:

import network
enable station interface and connect to WiFi access point
nic = network.WLAN(network.STA_IF)
nic.active(True)
nic.connect('your-ssid', 'your-password')
now use sockets as usual

Constructors

	
class network.WLAN(interface_id)

	

Create a WLAN network interface object. Supported interfaces are
network.STA_IF (station aka client, connects to upstream WiFi access
points) and network.AP_IF (access point, allows other WiFi clients to
connect). Availability of the methods below depends on interface type.
For example, only STA interface may connect() to an access point.

Methods

	
wlan.active([is_active])

	Activate (“up”) or deactivate (“down”) network interface, if boolean
argument is passed. Otherwise, query current state if no argument is
provided. Most other methods require active interface.

	
wlan.connect(ssid, password)

	Connect to the specified wireless network, using the specified password.

	
wlan.disconnect()

	Disconnect from the currently connected wireless network.

	
wlan.scan()

	Scan for the available wireless networks.

Scanning is only possible on STA interface. Returns list of tuples with
the information about WiFi access points:

(ssid, bssid, channel, RSSI, authmode, hidden)

bssid is hardware address of an access point, in binary form, returned as
bytes object. You can use ubinascii.hexlify() to convert it to ASCII form.

There are five values for authmode:

	0 – open

	1 – WEP

	2 – WPA-PSK

	3 – WPA2-PSK

	4 – WPA/WPA2-PSK

and two for hidden:

	0 – visible

	1 – hidden

	
wlan.status()

	Return the current status of the wireless connection.

The possible statuses are defined as constants:

	STAT_IDLE – no connection and no activity,

	STAT_CONNECTING – connecting in progress,

	STAT_WRONG_PASSWORD – failed due to incorrect password,

	STAT_NO_AP_FOUND – failed because no access point replied,

	STAT_CONNECT_FAIL – failed due to other problems,

	STAT_GOT_IP – connection successful.

	
wlan.isconnected()

	In case of STA mode, returns True if connected to a WiFi access
point and has a valid IP address. In AP mode returns True when a
station is connected. Returns False otherwise.

	
wlan.ifconfig([(ip, subnet, gateway, dns)])

	Get/set IP-level network interface parameters: IP address, subnet mask,
gateway and DNS server. When called with no arguments, this method returns
a 4-tuple with the above information. To set the above values, pass a
4-tuple with the required information. For example:

nic.ifconfig(('192.168.0.4', '255.255.255.0', '192.168.0.1', '8.8.8.8'))

	
wlan.config('param')

	

	
wlan.config(param=value, ...)

	Get or set general network interface parameters. These methods allow to work
with additional parameters beyond standard IP configuration (as dealt with by
wlan.ifconfig()). These include network-specific and hardware-specific
parameters. For setting parameters, keyword argument syntax should be used,
multiple parameters can be set at once. For querying, parameters name should
be quoted as a string, and only one parameter can be queries at time:

Set WiFi access point name (formally known as ESSID) and WiFi channel
ap.config(essid='My AP', channel=11)
Query params one by one
print(ap.config('essid'))
print(ap.config('channel'))

Following are commonly supported parameters (availability of a specific parameter
depends on network technology type, driver, and MicroPython port).

	Parameter

	Description

	mac

	MAC address (bytes)

	essid

	WiFi access point name (string)

	channel

	WiFi channel (integer)

	hidden

	Whether ESSID is hidden (boolean)

	authmode

	Authentication mode supported (enumeration, see module constants)

	password

	Access password (string)

 uctypes – access binary data in a structured way

uctypes – access binary data in a structured way

Warning

This module is inherited from MicroPython and may not work in CircuitPython
as documented or at all! If they do work, they may change at any time. It is
unsupported.

This module implements “foreign data interface” for MicroPython. The idea
behind it is similar to CPython’s ctypes modules, but the actual API is
different, streamlined and optimized for small size. The basic idea of the
module is to define data structure layout with about the same power as the
C language allows, and the access it using familiar dot-syntax to reference
sub-fields.

See also

	Module struct

	Standard Python way to access binary data structures (doesn’t scale
well to large and complex structures).

Defining structure layout

Structure layout is defined by a “descriptor” - a Python dictionary which
encodes field names as keys and other properties required to access them as
associated values. Currently, uctypes requires explicit specification of
offsets for each field. Offset are given in bytes from a structure start.

Following are encoding examples for various field types:

	Scalar types:

"field_name": uctypes.UINT32 | 0

in other words, value is scalar type identifier ORed with field offset
(in bytes) from the start of the structure.

	Recursive structures:

"sub": (2, {
 "b0": uctypes.UINT8 | 0,
 "b1": uctypes.UINT8 | 1,
})

i.e. value is a 2-tuple, first element of which is offset, and second is
a structure descriptor dictionary (note: offsets in recursive descriptors
are relative to a structure it defines).

	Arrays of primitive types:

"arr": (uctypes.ARRAY | 0, uctypes.UINT8 | 2),

i.e. value is a 2-tuple, first element of which is ARRAY flag ORed
with offset, and second is scalar element type ORed number of elements
in array.

	Arrays of aggregate types:

"arr2": (uctypes.ARRAY | 0, 2, {"b": uctypes.UINT8 | 0}),

i.e. value is a 3-tuple, first element of which is ARRAY flag ORed
with offset, second is a number of elements in array, and third is
descriptor of element type.

	Pointer to a primitive type:

"ptr": (uctypes.PTR | 0, uctypes.UINT8),

i.e. value is a 2-tuple, first element of which is PTR flag ORed
with offset, and second is scalar element type.

	Pointer to an aggregate type:

"ptr2": (uctypes.PTR | 0, {"b": uctypes.UINT8 | 0}),

i.e. value is a 2-tuple, first element of which is PTR flag ORed
with offset, second is descriptor of type pointed to.

	Bitfields:

"bitf0": uctypes.BFUINT16 | 0 | 0 << uctypes.BF_POS | 8 << uctypes.BF_LEN,

i.e. value is type of scalar value containing given bitfield (typenames are
similar to scalar types, but prefixes with “BF”), ORed with offset for
scalar value containing the bitfield, and further ORed with values for
bit offset and bit length of the bitfield within scalar value, shifted by
BF_POS and BF_LEN positions, respectively. Bitfield position is counted
from the least significant bit, and is the number of right-most bit of a
field (in other words, it’s a number of bits a scalar needs to be shifted
right to extra the bitfield).

In the example above, first UINT16 value will be extracted at offset 0
(this detail may be important when accessing hardware registers, where
particular access size and alignment are required), and then bitfield
whose rightmost bit is least-significant bit of this UINT16, and length
is 8 bits, will be extracted - effectively, this will access
least-significant byte of UINT16.

Note that bitfield operations are independent of target byte endianness,
in particular, example above will access least-significant byte of UINT16
in both little- and big-endian structures. But it depends on the least
significant bit being numbered 0. Some targets may use different
numbering in their native ABI, but uctypes always uses normalized
numbering described above.

Module contents

	
class uctypes.struct(addr, descriptor, layout_type=NATIVE)

	Instantiate a “foreign data structure” object based on structure address in
memory, descriptor (encoded as a dictionary), and layout type (see below).

	
uctypes.LITTLE_ENDIAN

	Layout type for a little-endian packed structure. (Packed means that every
field occupies exactly as many bytes as defined in the descriptor, i.e.
the alignment is 1).

	
uctypes.BIG_ENDIAN

	Layout type for a big-endian packed structure.

	
uctypes.NATIVE

	Layout type for a native structure - with data endianness and alignment
conforming to the ABI of the system on which MicroPython runs.

	
uctypes.sizeof(struct)

	Return size of data structure in bytes. Argument can be either structure
class or specific instantiated structure object (or its aggregate field).

	
uctypes.addressof(obj)

	Return address of an object. Argument should be bytes, bytearray or
other object supporting buffer protocol (and address of this buffer
is what actually returned).

	
uctypes.bytes_at(addr, size)

	Capture memory at the given address and size as bytes object. As bytes
object is immutable, memory is actually duplicated and copied into
bytes object, so if memory contents change later, created object
retains original value.

	
uctypes.bytearray_at(addr, size)

	Capture memory at the given address and size as bytearray object.
Unlike bytes_at() function above, memory is captured by reference,
so it can be both written too, and you will access current value
at the given memory address.

Structure descriptors and instantiating structure objects

Given a structure descriptor dictionary and its layout type, you can
instantiate a specific structure instance at a given memory address
using uctypes.struct() constructor. Memory address usually comes from
following sources:

	Predefined address, when accessing hardware registers on a baremetal
system. Lookup these addresses in datasheet for a particular MCU/SoC.

	As a return value from a call to some FFI (Foreign Function Interface)
function.

	From uctypes.addressof(), when you want to pass arguments to an FFI
function, or alternatively, to access some data for I/O (for example,
data read from a file or network socket).

Structure objects

Structure objects allow accessing individual fields using standard dot
notation: my_struct.substruct1.field1. If a field is of scalar type,
getting it will produce a primitive value (Python integer or float)
corresponding to the value contained in a field. A scalar field can also
be assigned to.

If a field is an array, its individual elements can be accessed with
the standard subscript operator [] - both read and assigned to.

If a field is a pointer, it can be dereferenced using [0] syntax
(corresponding to C * operator, though [0] works in C too).
Subscripting a pointer with other integer values but 0 are supported too,
with the same semantics as in C.

Summing up, accessing structure fields generally follows C syntax,
except for pointer dereference, when you need to use [0] operator
instead of *.

Limitations

Accessing non-scalar fields leads to allocation of intermediate objects
to represent them. This means that special care should be taken to
layout a structure which needs to be accessed when memory allocation
is disabled (e.g. from an interrupt). The recommendations are:

	Avoid nested structures. For example, instead of
mcu_registers.peripheral_a.register1, define separate layout
descriptors for each peripheral, to be accessed as
peripheral_a.register1.

	Avoid other non-scalar data, like array. For example, instead of
peripheral_a.register[0] use peripheral_a.register0.

Note that these recommendations will lead to decreased readability
and conciseness of layouts, so they should be used only if the need
to access structure fields without allocation is anticipated (it’s
even possible to define 2 parallel layouts - one for normal usage,
and a restricted one to use when memory allocation is prohibited).

 esp — functions related to the ESP8266

esp — functions related to the ESP8266

Warning

This module is inherited from MicroPython and may not work in CircuitPython
as documented or at all! If they do work, they may change at any time. It is
unsupported.

The esp module contains specific functions related to the ESP8266 module.

Functions

	
esp.sleep_type([sleep_type])

	Get or set the sleep type.

If the sleep_type parameter is provided, sets the sleep type to its
value. If the function is called without parameters, returns the current
sleep type.

The possible sleep types are defined as constants:

	SLEEP_NONE – all functions enabled,

	SLEEP_MODEM – modem sleep, shuts down the WiFi Modem circuit.

	SLEEP_LIGHT – light sleep, shuts down the WiFi Modem circuit
and suspends the processor periodically.

The system enters the set sleep mode automatically when possible.

	
esp.deepsleep(time=0)

	Enter deep sleep.

The whole module powers down, except for the RTC clock circuit, which can
be used to restart the module after the specified time if the pin 16 is
connected to the reset pin. Otherwise the module will sleep until manually
reset.

	
esp.flash_id()

	Read the device ID of the flash memory.

	
esp.flash_read(byte_offset, length_or_buffer)

	

	
esp.flash_write(byte_offset, bytes)

	

	
esp.flash_erase(sector_no)

	

	
esp.set_native_code_location(start, length)

	Set the location that native code will be placed for execution after it is
compiled. Native code is emitted when the @micropython.native,
@micropython.viper and @micropython.asm_xtensa decorators are applied
to a function. The ESP8266 must execute code from either iRAM or the lower
1MByte of flash (which is memory mapped), and this function controls the
location.

If start and length are both None then the native code location is
set to the unused portion of memory at the end of the iRAM1 region. The
size of this unused portion depends on the firmware and is typically quite
small (around 500 bytes), and is enough to store a few very small
functions. The advantage of using this iRAM1 region is that it does not
get worn out by writing to it.

If neither start nor length are None then they should be integers.
start should specify the byte offset from the beginning of the flash at
which native code should be stored. length specifies how many bytes of
flash from start can be used to store native code. start and length
should be multiples of the sector size (being 4096 bytes). The flash will
be automatically erased before writing to it so be sure to use a region of
flash that is not otherwise used, for example by the firmware or the
filesystem.

When using the flash to store native code start+length must be less
than or equal to 1MByte. Note that the flash can be worn out if repeated
erasures (and writes) are made so use this feature sparingly.
In particular, native code needs to be recompiled and rewritten to flash
on each boot (including wake from deepsleep).

In both cases above, using iRAM1 or flash, if there is no more room left
in the specified region then the use of a native decorator on a function
will lead to MemoryError exception being raised during compilation of
that function.

 Adafruit's CircuitPython Documentation

Adafruit's CircuitPython Documentation

The latest documentation can be found at:
http://circuitpython.readthedocs.io/en/latest/

The documentation you see there is generated from the files in the whole tree:
https://github.com/adafruit/circuitpython/tree/master

Building the documentation locally

If you're making changes to the documentation, you should build the
documentation locally so that you can preview your changes.

Install Sphinx, recommonmark, and optionally (for the RTD-styling), sphinx_rtd_theme,
preferably in a virtualenv:

 pip install sphinx
 pip install recommonmark
 pip install sphinx_rtd_theme

In circuitpython/, build the docs:

sphinx-build -v -b html . _build/html

You'll find the index page at _build/html/index.html.

 Python Module Index

 Python Module Index

 a |
 b |
 e |
 f |
 g |
 m |
 n |
 s |
 u

 		 	

 		
 a	

 	
 	
 array	
 efficient arrays of numeric data

 		 	

 		
 b	

 	
 	
 btree	
 simple BTree database

 		 	

 		
 e	

 	
 	
 esp	
 functions related to the ESP8266

 		 	

 		
 f	

 	
 	
 framebuf	
 Frame buffer manipulation

 		 	

 		
 g	

 	
 	
 gc	
 control the garbage collector

 		 	

 		
 m	

 	
 	
 math	
 mathematical functions

 	
 	
 micropython	
 access and control MicroPython internals

 		 	

 		
 n	

 	
 	
 network	
 network configuration

 		 	

 		
 s	

 	
 	
 sys	
 system specific functions

 		 	

 		
 u	

 	
 	
 ubinascii	
 binary/ASCII conversions

 	
 	
 ucollections	
 collection and container types

 	
 	
 uctypes	
 access binary data in a structured way

 	
 	
 uerrno	
 system error codes

 	
 	
 uhashlib	
 hashing algorithms

 	
 	
 uheapq	
 heap queue algorithm

 	
 	
 uio	
 input/output streams

 	
 	
 ujson	
 JSON encoding and decoding

 	
 	
 ure	
 regular expressions

 	
 	
 uselect	
 wait for events on a set of streams

 	
 	
 usocket	
 socket module

 	
 	
 ussl	
 TLS/SSL wrapper for socket objects

 	
 	
 ustruct	
 pack and unpack primitive data types

 	
 	
 uzlib	
 zlib decompression

 Index

Index

 _
 | A
 | B
 | C
 | D
 | E
 | F
 | G
 | H
 | I
 | K
 | L
 | M
 | N
 | O
 | P
 | Q
 | R
 | S
 | T
 | U
 | V
 | W
 | Z

_

 	
 	__contains__() (btree.btree method)

 	__detitem__() (btree.btree method)

 	
 	__getitem__() (btree.btree method)

 	__iter__() (btree.btree method)

 	__setitem__() (btree.btree method)

A

 	
 	a2b_base64() (in module ubinascii)

 	abs() (built-in function)

 	AbstractNIC (class in network)

 	accept() (usocket.socket method)

 	acos() (in module math)

 	acosh() (in module math)

 	active() (in module network)

 	(network.wlan method)

 	addressof() (in module uctypes)

 	AF_INET (in module usocket)

 	AF_INET6 (in module usocket)

 	all() (built-in function)

 	
 	alloc_emergency_exception_buf() (in module micropython)

 	any() (built-in function)

 	append() (array.array.array method)

 	argv (in module sys)

 	array (module)

 	array.array (class in array)

 	asin() (in module math)

 	asinh() (in module math)

 	AssertionError

 	atan() (in module math)

 	atan2() (in module math)

 	atanh() (in module math)

 	AttributeError

B

 	
 	b2a_base64() (in module ubinascii)

 	BIG_ENDIAN (in module uctypes)

 	bin() (built-in function)

 	bind() (usocket.socket method)

 	blit() (framebuf.FrameBuffer method)

 	bool (built-in class)

 	
 	btree (module)

 	bytearray (built-in class)

 	bytearray_at() (in module uctypes)

 	byteorder (in module sys)

 	bytes (built-in class)

 	bytes_at() (in module uctypes)

 	BytesIO (class in uio)

C

 	
 	calcsize() (in module ustruct)

 	callable() (built-in function)

 	ceil() (in module math)

 	chr() (built-in function)

 	classmethod() (built-in function)

 	close() (btree.btree method)

 	(usocket.socket method)

 	collect() (in module gc)

 	compile() (built-in function)

 	(in module ure)

 	
 	complex (built-in class)

 	config() (in module network)

 	(network.wlan method), [1]

 	connect() (in module network)

 	(network.wlan method)

 	(usocket.socket method)

 	const() (in module micropython)

 	copysign() (in module math)

 	cos() (in module math)

 	cosh() (in module math)

D

 	
 	DEBUG (in module ure)

 	DecompIO (class in uzlib)

 	decompress() (in module uzlib)

 	deepsleep() (in module esp)

 	degrees() (in module math)

 	delattr() (built-in function)

 	DESC (in module btree)

 	
 	dict (built-in class)

 	digest() (uhashlib.hash method)

 	dir() (built-in function)

 	disable() (in module gc)

 	disconnect() (in module network)

 	(network.wlan method)

 	divmod() (built-in function)

 	dumps() (in module ujson)

E

 	
 	e (in module math)

 	enable() (in module gc)

 	enumerate() (built-in function)

 	erf() (in module math)

 	erfc() (in module math)

 	errorcode (in module uerrno)

 	esp (module)

 	
 	eval() (built-in function)

 	Exception

 	exec() (built-in function)

 	exit() (in module sys)

 	exp() (in module math)

 	expm1() (in module math)

 	extend() (array.array.array method)

F

 	
 	fabs() (in module math)

 	FileIO (class in uio)

 	fill() (framebuf.FrameBuffer method)

 	fill_rect() (framebuf.FrameBuffer method)

 	filter() (built-in function)

 	flash_erase() (in module esp)

 	flash_id() (in module esp)

 	flash_read() (in module esp)

 	flash_write() (in module esp)

 	float (built-in class)

 	floor() (in module math)

 	
 	flush() (btree.btree method)

 	fmod() (in module math)

 	framebuf (module)

 	framebuf.GS4_HMSB (in module framebuf)

 	framebuf.MONO_HLSB (in module framebuf)

 	framebuf.MONO_HMSB (in module framebuf)

 	framebuf.MONO_VLSB (in module framebuf)

 	framebuf.RGB565 (in module framebuf)

 	FrameBuffer (class in framebuf)

 	frexp() (in module math)

 	from_bytes() (int class method)

 	frozenset (built-in class)

G

 	
 	gamma() (in module math)

 	gc (module)

 	get() (btree.btree method)

 	getaddrinfo() (in module usocket)

 	
 	getattr() (built-in function)

 	getvalue() (uio.BytesIO method)

 	globals() (built-in function)

 	group() (ure.match method)

H

 	
 	hasattr() (built-in function)

 	hash() (built-in function)

 	heap_lock() (in module micropython)

 	heap_unlock() (in module micropython)

 	heapify() (in module uheapq)

 	
 	heappop() (in module uheapq)

 	heappush() (in module uheapq)

 	hex() (built-in function)

 	hexdigest() (uhashlib.hash method)

 	hexlify() (in module ubinascii)

 	hline() (framebuf.FrameBuffer method)

I

 	
 	id() (built-in function)

 	ifconfig() (in module network)

 	(network.wlan method)

 	implementation (in module sys)

 	ImportError

 	INCL (in module btree)

 	IndexError

 	input() (built-in function)

 	int (built-in class)

 	ipoll() (uselect.poll method)

 	IPPROTO_SEC (in module usocket)

 	
 	IPPROTO_TCP (in module usocket)

 	IPPROTO_UDP (in module usocket)

 	isconnected() (in module network)

 	(network.wlan method)

 	isfinite() (in module math)

 	isinf() (in module math)

 	isinstance() (built-in function)

 	isnan() (in module math)

 	issubclass() (built-in function)

 	items() (btree.btree method)

 	iter() (built-in function)

K

 	
 	kbd_intr() (in module micropython)

 	KeyboardInterrupt

 	
 	KeyError

 	keys() (btree.btree method)

L

 	
 	ldexp() (in module math)

 	len() (built-in function)

 	lgamma() (in module math)

 	line() (framebuf.FrameBuffer method)

 	list (built-in class)

 	listen() (usocket.socket method)

 	
 	LITTLE_ENDIAN (in module uctypes)

 	loads() (in module ujson)

 	locals() (built-in function)

 	log() (in module math)

 	log10() (in module math)

 	log2() (in module math)

M

 	
 	makefile() (usocket.socket method)

 	map() (built-in function)

 	match() (in module ure)

 	(ure.regex method)

 	math (module)

 	max() (built-in function)

 	maxsize (in module sys)

 	mem_alloc() (in module gc)

 	
 	mem_free() (in module gc)

 	mem_info() (in module micropython)

 	MemoryError

 	memoryview (built-in class)

 	micropython (module)

 	min() (built-in function)

 	modf() (in module math)

 	modify() (uselect.poll method)

 	modules (in module sys)

N

 	
 	namedtuple() (in module ucollections)

 	NameError

 	NATIVE (in module uctypes)

 	
 	network (module)

 	next() (built-in function)

 	NotImplementedError

O

 	
 	object (built-in class)

 	oct() (built-in function)

 	open() (built-in function)

 	(in module btree)

 	(in module uio)

 	
 	opt_level() (in module micropython)

 	ord() (built-in function)

 	OrderedDict() (in module ucollections)

 	OSError

P

 	
 	pack() (in module ustruct)

 	pack_into() (in module ustruct)

 	path (in module sys)

 	phy_mode() (in module network)

 	pi (in module math)

 	pixel() (framebuf.FrameBuffer method)

 	platform (in module sys)

 	
 	poll() (in module uselect)

 	(uselect.poll method)

 	pow() (built-in function)

 	(in module math)

 	print() (built-in function)

 	print_exception() (in module sys)

 	property() (built-in function)

Q

 	
 	qstr_info() (in module micropython)

R

 	
 	radians() (in module math)

 	range() (built-in function)

 	read() (usocket.socket method)

 	readinto() (usocket.socket method)

 	readline() (usocket.socket method)

 	rect() (framebuf.FrameBuffer method)

 	
 	recv() (usocket.socket method)

 	recvfrom() (usocket.socket method)

 	register() (uselect.poll method)

 	repr() (built-in function)

 	reversed() (built-in function)

 	round() (built-in function)

 	RuntimeError

S

 	
 	scan() (in module network)

 	(network.wlan method)

 	schedule() (in module micropython)

 	scroll() (framebuf.FrameBuffer method)

 	search() (in module ure)

 	(ure.regex method)

 	select() (in module uselect)

 	send() (usocket.socket method)

 	sendall() (usocket.socket method)

 	sendto() (usocket.socket method)

 	set (built-in class)

 	set_native_code_location() (in module esp)

 	setattr() (built-in function)

 	setblocking() (usocket.socket method)

 	setsockopt() (usocket.socket method)

 	settimeout() (usocket.socket method)

 	sin() (in module math)

 	sinh() (in module math)

 	sizeof() (in module uctypes)

 	sleep_type() (in module esp)

 	slice (built-in class)

 	SOCK_DGRAM (in module usocket)

 	SOCK_STREAM (in module usocket)

 	socket() (in module usocket)

 	
 	socket.error

 	sorted() (built-in function)

 	split() (ure.regex method)

 	sqrt() (in module math)

 	ssl.CERT_NONE (in module ussl)

 	ssl.CERT_OPTIONAL (in module ussl)

 	ssl.CERT_REQUIRED (in module ussl)

 	ssl.SSLError (in module ussl)

 	ssl.wrap_socket() (in module ussl)

 	stack_use() (in module micropython)

 	staticmethod() (built-in function)

 	status() (in module network)

 	(network.wlan method)

 	stderr (in module sys)

 	stdin (in module sys)

 	stdout (in module sys)

 	StopIteration

 	str (built-in class)

 	StringIO (class in uio)

 	struct (class in uctypes)

 	sum() (built-in function)

 	super() (built-in function)

 	SyntaxError

 	sys (module)

 	SystemExit

T

 	
 	tan() (in module math)

 	tanh() (in module math)

 	text() (framebuf.FrameBuffer method)

 	TextIOWrapper (class in uio)

 	threshold() (in module gc)

 	
 	to_bytes() (int method)

 	trunc() (in module math)

 	tuple (built-in class)

 	type() (built-in function)

 	TypeError

U

 	
 	ubinascii (module)

 	ucollections (module)

 	uctypes (module)

 	uerrno (module)

 	uhashlib (module)

 	uhashlib.md5 (class in uhashlib)

 	uhashlib.sha1 (class in uhashlib)

 	uhashlib.sha256 (class in uhashlib)

 	uheapq (module)

 	uio (module)

 	ujson (module)

 	
 	unhexlify() (in module ubinascii)

 	unpack() (in module ustruct)

 	unpack_from() (in module ustruct)

 	unregister() (uselect.poll method)

 	update() (uhashlib.hash method)

 	ure (module)

 	uselect (module)

 	usocket (module)

 	ussl (module)

 	ustruct (module)

 	uzlib (module)

V

 	
 	ValueError

 	values() (btree.btree method)

 	
 	version (in module sys)

 	version_info (in module sys)

 	vline() (framebuf.FrameBuffer method)

W

 	
 	WLAN (class in network)

 	
 	write() (usocket.socket method)

Z

 	
 	ZeroDivisionError

 	
 	zip() (built-in function)

nav.xhtml

 Table of Contents

 		
 Adafruit CircuitPython API Reference

 		
 Supported Ports

 		
 Troubleshooting

 		
 File system issues

 		
 ValueError: Incompatible .mpy file.

 		
 Additional Adafruit Libraries and Drivers on GitHub

 		
 Bundle

 		
 Foundational Libraries

 		
 Helper Libraries

 		
 Drivers

 		
 Design Guide

 		
 Start libraries with the cookiecutter

 		
 Module Naming

 		
 Lifetime and ContextManagers

 		
 Verify your device

 		
 Getters/Setters

 		
 Design for compatibility with CPython

 		
 Example

 		
 Document inline

 		
 Module description

 		
 Class description

 		
 Data descriptor description

 		
 Method description

 		
 Property description

 		
 Use BusDevice

 		
 I2C Example

 		
 SPI Example

 		
 Use composition

 		
 Lots of small modules

 		
 Speed second

 		
 Avoid allocations in drivers

 		
 Examples

 		
 Sensor properties and units

 		
 Common APIs

 		
 Adding native modules

 		
 MicroPython compatibility

 		
 Adding *io support to other ports

 		
 File layout

 		
 Adding support

 		
 Modifying the build

 		
 Hooking the modules in

 		
 Implementing the Common HAL

 		
 Testing

 		
 MicroPython libraries

 		
 Python standard libraries and micro-libraries

 		
 Builtin functions and exceptions

 		
 array – arrays of numeric data

 		
 gc – control the garbage collector

 		
 math – mathematical functions

 		
 sys – system specific functions

 		
 ubinascii – binary/ASCII conversions

 		
 ucollections – collection and container types

 		
 uerrno – system error codes

 		
 uhashlib – hashing algorithms

 		
 uheapq – heap queue algorithm

 		
 uio – input/output streams

 		
 ujson – JSON encoding and decoding

 		
 ure – simple regular expressions

 		
 uselect – wait for events on a set of streams

 		
 usocket – socket module

 		
 ussl – SSL/TLS module

 		
 ustruct – pack and unpack primitive data types

 		
 uzlib – zlib decompression

 		
 MicroPython-specific libraries

 		
 btree – simple BTree database

 		
 framebuf — Frame buffer manipulation

 		
 micropython – access and control MicroPython internals

 		
 network — network configuration

 		
 uctypes – access binary data in a structured way

